[1] HOWELL L L. Compliant mechanisms[M]. New York:John Wiley & Sons, 2001. [2] 于靖军, 郝广波, 陈贵敏, 等. 柔性机构及其应用研究进展[J]. 机械工程学报, 2015, 51(13):53-68. YU Jingjun, HAO Guangbo, CHEN Guimin, et al. State-of-art of compliant mechanisms and their applications[J]. Journal of Mechanical Engineering, 2015, 51(13):53-68. [3] WU Z Y, XU Q S. Survey on recent designs of compliant micro-/nano-positioning stages[J]. Actuators, 2018, 7:5. [4] 曹毅, 王保兴, 孟刚, 等. 大行程三平动柔性微定位平台的设计分析及优化[J]. 机械工程学报, 2020, 56(17):71-81. CAO Yi, WANG Baoxing, MENG Gang, et al. Design analysis and optimization of large range spatial translational compliant micro-positioning stage[J]. Journal of Mechanical Engineering, 2020, 56(17):71-81. [5] LING M X, WANG J L, WU M X, et al. Design and modeling of an improved bridge-type compliant mechanism with its application for hydraulic piezo-valves[J]. Sensors and Actuators A:Physical, 2021, 324:112687. [6] 吴石磊, 邵忠喜, 苏海军, 等. 大负载高精度光栅拼接柔顺并联机构的设计方法[J]. 机械工程学报, 2020, 56(19):113-121. WU Shilei, SHAO Zhongxi, SU Haijun, et al. Structure design method of complaint parallel mechanism for grating tiling with heavy load capacity and high precision[J]. Journal of Mechanical Engineering, 2020, 56(19):113-121. [7] 李立建, 马爱霞, 姚建涛, 等. 柔性并联六维力传感器力映射解析研究[J]. 机械工程学报, 2017, 53(7):30-38. LI Lijian, MA Aixia, YAO Jiantao, et al. Force mapping analytical research of flexure parallel six-axis force/torque sensor[J]. Journal of Mechanical Engineering, 2017, 53(7):30-38. [8] PAROS J M, WEISBORD L. How to design flexure hinges[J]. Machine Design, 1965, 37(27):151-156. [9] LOBONTIU N. Compliant mechanisms:design of flexure hinges[M]. CRC Press, Boca Raton, 2003. [10] CHEN G M, LIU X Y, DU Y L. Elliptical-arc-fillet flexure hinges:Toward a generalized model for commonly used flexure hinges[J]. ASME Journal of Mechanical Design, 2011, 133(8):081002. [11] TIAN Y, SHIRINZADEH B, ZHANG D. Closed-form compliance equations of filleted V-shaped flexure hinges for compliant mechanism design[J]. Precision Engineering, 2010, 34(3):408-418. [12] KONG J Y, HUANG Z, XIAN X D, et al. Generalized model for conic-V-shaped flexure hinges[J]. Science Progress, 2020, 103(4):1-26. [13] CHEN G M, LIU X Y, GAO H W, et al. A generalized model for conic flexure hinges[J]. Review of Scientific Instruments, 2009, 80(5):055106. [14] WANG R Q, ZHOU X Q, ZHU Z W. Development of a novel sort of exponent-sine-shaped flexure hinges[J]. Review of Scientific Instruments, 2013, 84(9):095008. [15] LOBONTIU N, CULLIN M, PETERSEN T, et al. Planar compliances of symmetric notch flexure hinges:the right circularly corner-filleted parabolic design[J]. IEEE Transactions on Automation Science and Engineering, 2014, 11(1):169-176. [16] LI L J, ZHANG D, GUO S, et al. A generic compliance modeling method for two-axis elliptical-arc-filleted flexure hinges[J]. Sensors, 2017, 17(9):2154. [17] 曹锋, 焦宗夏. 双轴椭圆柔性铰链的设计计算[J]. 工程力学, 2007, 24(4):178-182. CAO Feng, JIAO Zongxia. Design of double-axis elliptical flexure hinges[J]. Engineering Mechanics, 2007, 24(4):178-182. [18] 姚建涛, 李立建, 杨维, 等. 直圆柔性球铰柔度矩阵的解析计算[J]. 光学精密工程, 2014, 22(7):1857-1863. YAO Jiantao, LI Lijian, YANG Wei, et al. Analytical calculation of compliance matrix for right-circular flexure spherical hinge[J]. Optics and Precision Engineering, 2014, 22(7):1857-1863. [19] WEI H X, SHIRINZADEH B, TANG H, et al. Closed-form compliance equations for elliptic-revolute notch type multiple-axis flexure hinges[J]. Mechanism and Machine Theory, 2021, 156:104154. [20] 陈贵敏, 贾建援, 刘小院, 等. 直圆椭圆复合型柔性铰链研究[J]. 机械设计与研究, 2005, 21(4):37-39. CHEN Guimin, JIA Jianyuan, LIU Xiaoyuan, et al. On right-circular elliptical flexure hinge[J]. Machine Design and Research, 2005, 21(4):37-39. [21] 倪迎雪, 伞晓刚, 高世杰, 等. 新型混合柔性铰链柔度研究[J]. 红外与激光工程, 2016, 45(10):1017001. NI Yingxue, SAN Xiaogang, GAO Shijie, et al. Research on flexibility of the novel hybrid flexure hinge[J]. Infrared and Laser Engineering, 2016, 45(10):1017001. [22] LOBONTIU N. Symmetry-based compliance model of multisegment notch flexure hinges[J]. Mechanics Based Design of Structures and Machines, 2012, 40(2):185-205. [23] LOBONTIU N, CULLIN M, ALI M, et al. A generalized analytical compliance model for transversely symmetric three-segment flexure hinges[J]. Review of Scientific Instruments, 2011, 82(10):105116. [24] LI L J, ZHANG D, GUO S, et al. Design, modeling, and analysis of hybrid flexure hinges[J]. Mechanism and Machine Theory, 2019, 131:300-316. [25] IVANOV I, CORVES B. Stiffness-oriented design of a flexure hinge-based parallel manipulator[J]. Mechanics Based Design of Structures and Machines, 2014, 42:326-342. [26] COWPER G R. The shear coefficient in Timoshenko beam theory[J]. Journal of Applied Mechanics, 1966, 33(2):335-340. [27] CHEN G M, HOWELL L L. Two general solutions of torsional compliance for variable rectangular cross-section hinges in compliant mechanisms[J]. Precision Engineering, 2009, 33(3):268-274. [28] PHAM H, CHEN I M. Stiffness modeling of flexure parallel mechanism[J]. Precision Engineering, 2005, 29(4):467-478. [29] LIANG Q K, ZHANG D, CHI Z Z, et al. Six-DOF micro-manipulator based on compliant parallel mechanism with integrated force sensor[J]. Robotics and Computer-Integrated Manufacturing, 2011, 27(1):124-134. [30] LIN R Z, ZHANG X M, LONG X J, et al. Hybrid flexure hinges[J]. Review of Scientific Instruments, 2013, 84(8):085004. |