• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2015, Vol. 51 ›› Issue (2): 78-83.doi: 10.3901/JME.2015.02.078

• 材料科学与工程 • 上一篇    下一篇

扫码分享

基于有限元法的黏弹性材料动态力学参数测量方法

陶 猛1, 2   

  1. 1.贵州大学机械工程学院
    2.上海交通大学机械系统与振动国家重点实验室
  • 出版日期:2015-01-20 发布日期:2015-01-20
  • 基金资助:
    国家自然科学基金(11304050,51365007)、高等学校博士学科点专项科研基金(20135201120007)和上海交通大学机械系统与振动国家重点实验室开放课题(MSV-2013-01)资助项目

Measurement of Viscoelastic Dynamic Parameters Based on Finite Element Method

TAO Meng1, 2   

  1. School of Mechanical Engineering, Guizhou University, Guiyang 550025;State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240
  • Online:2015-01-20 Published:2015-01-20

摘要: 提出一种通过测量黏弹性空腔覆盖层反射系数,结合有限元法计算黏弹性材料动态力学参数的方法。分别测量黏弹性空腔覆盖层在两种不同背衬条件下的反射系数,并根据黏弹性空腔覆盖层反射系数的有限元计算模型,建立求解黏弹性材料动态力学参数的二元方程组。利用二元非线性方程组求根的牛顿迭代法,求解方程组可以获得黏弹性材料的复纵波声速和复剪切波声速,进而计算复弹性模量和复泊松比等其他黏弹性动态力学参数。在水声声管中采用双水听器法测量某种聚氨酯材料样品的反射系数,获得了黏弹性材料的动态力学参数,并讨论试验误差对结果的影响:当双水听器的幅值不一致时,对复弹性模量和复泊松比实部的影响较大;当双水听器的相位不一致时,主要影响复弹性模量和复泊松比实部的损耗因子。

关键词: 动态力学参数, 反射系数, 黏弹性材料, 有限元法

Abstract: Based on measuring the reflection coefficient of viscoelastic layer and using the finite element method, the calculation method of viscoelastic dynamic mechanical parameters are developed. Measuring a viscoelastic layer specimen under two different acoustic backings will result in two different reflection coefficients, and using the finite element model to solve the reflection coefficient of viscoelastic layer, two nonlinear equations which are used to calculate viscoelastic parameters will be obtained. Using Newton iteration method to solve the two equations, the complex longitudinal and shear wave speeds of viscoelastic material will be obtained. Thus, the complex elastic modulus and complex Poisson’s ratio will be derived easily. The viscoelastic dynamic mechanical parameters, such as complex elastic modulus and complex Poisson’s ratio of polyurethane have been measured, and the effects of measurement errors on the viscoelastic dynamic mechanical parameters are discussed:The real parts of complex elastic modulus and complex Poisson’s ratio are mostly sensitive to the difference of two-hydrophone magnitude, and the loss factors of complex elastic modulus and complex Poisson’s ratio are highly related to the difference of two-hydrophone phase.

Key words: dynamic mechanical parameters, finite element method, reflection coefficient, viscoelastic material

中图分类号: