[1] KEYVAN H Z,SALCUDEAN S E. Analysis of control architectures for teleoperation systems with impedance/ admittance master and slave manipulators[J]. The International Journal of Robotics Research,2001,20:419-445. [2] OTT C,MUKHERJEE R,NAKAMURA Y. Unified impedance and admittance control[C]// 2010 IEEE International Conference on Robotics and Automation ICRA 2010,3-7 May,2010,Anchorage,AK,USA. IEEE,2010:554-561. [3] 王国彪,陈殿生,陈科位,等. 仿生机器人研究现状与发展趋势[J]. 机械工程学报,2015,51(13):27-44. WANG Guobiao,CHEN Diansheng,CHEN Kewei,et al. The current research status and development strategy on biomimetic robot[J]. Journal of Mechanical Engineering,2015,51(13):27-44. [4] PRATT G A,WILLISSON P,BOLTON C,et al. Late motor processing in low-impedance robots:Impedance control of series-elastic actuators[C]// Proceedings of the American Control Conference,2004,June 30-July 2,2004,Boston,MA,USA. IEEE,2004:3245-3251. [5] PALUSKA D,HERR H. The effect of series elasticity on actuator power and work output:Implications for robotic and prosthetic joint design[J]. Robotics and Autonomous Systems,2006,54(8):667-673. [6] 马洪文,赵朋,王立权,等. 刚度和等效质量对SEA能量放大特性的影响[J]. 机器人,2012,34(3):275-281. MA Hongwen,ZHAO Peng,WANG Liquan,et al. Effect of stiffness and equivalent mass on energy amplification characteristics of SEA[J]. Robot,2012,34(3):275-281. [7] SEYFARTH A,IIDA F,TAUSCH R,et al. Towards bipedal jogging as a natural result of optimizing walking speed for passively compliant three-segmented legs[J]. The International Journal of Robotics Research,2009,28:257-265. [8] VENEMAN J F,EKKELENKAMP R,KRUIDHOF R,et al. A series elastic and bowden-cable-based actuation system for use as torque actuator in exoskeleton-type robots[J]. International Journal of Robotics Research,2006,25(3):261-281. [9] JOONBUM B,KYOUNGCHUL K,MASAYOSHI T. Gait phase-based smoothed sliding mode control for a rotary series elastic actuator installed on the knee joint[C]// American Control Conference,ACC 2010,June 30-July 2,2010,Baltimore,MD,America. IEEE,2010:6030-6035. [10] JAFARI A,TSAGARAKIS N,VANDERBORGHT B,et al. A novel actuator with adjustable stiffness (AWAS) [C]// 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems,IROS 2010,October 18-22,2010,Taipei,Taiwan,China. IEEE,2010:4201-4206. [11] CHOI J,HONG S,LEE W,et al. A robot joint with variable stifness using leaf springs[J]. IEEE Transactions on Robotics,2011,27(2):229-238. [12] NIKITCZUK J,WEINBERG B,CANAVAN P,et al. Active knee rehabilitation orthotic device with variable damping characteristics implemented via an electrorheological fluid[J]. IEEE/ASME Transactions on Mechatronics,2010,15(6):952-960. [13] BULEA T C,KOBETIC R,TO C S,et al. A variable impedance knee mechanism for controlled stance flexion during pathological gait[J]. IEEE/ASME Transactions on Mechatronics,2012,17(5):822-832. [14] TENZER Y,DAVIES B L,BAENA F Y R. Four-state rotary joint control:Results with a novel programmable brake[J]. IEEE/ASME Transactions on Mechatronics,2012,17(5):915-923. [15] LEACH D,GUNTHER F,MAHESHWARI N. Linear multimodal actuation through discrete coupling[C]// Dynamic Systems and Control Division - 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems,IROS 2012,Vilamoura,Portugal. IEEE,2012:2437-2442. [16] 韩亚丽,贾山,王兴松. 基于人体生物力学的踝关节假肢的设计与仿真[J]. 机器人,2013,35(3):276-282. HAN Yali,JIA Shang,WANG Xingsong. Design and simulation of an ankle prosthesis with lower power based on human biomechanics[J]. Robot,2013,35(3):276-282. [17] HAN Yali,WANG Xingsong. The biomechanical study of lower limb during human walking[J]. Sci. China Ser. E-Tech. Sci.,2011,41(5):592-601. |