机械工程学报 ›› 2020, Vol. 56 ›› Issue (19): 14-27.doi: 10.3901/JME.2020.19.014
• 特邀专栏:纪念张启先院士诞辰95周年 • 上一篇 下一篇
于靖军1, 刘凯1, 孔宪文2
收稿日期:
2020-04-17
修回日期:
2020-06-18
出版日期:
2020-10-05
发布日期:
2020-11-17
作者简介:
于靖军,男,1974年出生,博士,教授,博士研究生导师。主要研究方向为机器人机构学、精密机械设计等。E-mail:jjyu@buaa.edu.cn;刘凯,男,1991年出生,博士研究生。主要研究方向为机器人机构学。E-mail:kailiu10@163.com;孔宪文,男,1969年出生,博士,副教授,博士研究生导师。主要研究方向为机器人机构学。E-mail:x.kong@hw.ac.uk
基金资助:
YU Jingjun1, LIU Kai1, KONG Xianwen2
Received:
2020-04-17
Revised:
2020-06-18
Online:
2020-10-05
Published:
2020-11-17
摘要: 多模式机构作为可重构机构的一个重要分支具备运动模式转换时间短、所需驱动器少等优点,在各个领域都极具应用前景。经过20年的发展,虽然涌现出一系列多模式机构的设计、分析方法,但是多模式机构的研究仍面临诸多挑战。根据不同运动模式下的几何、结构特征,概括并详述了多模式机构利用关节轴线、杆件和多模式单元进行运动模式切换的三种形式;从方法和技术的角度,综述了多模式机构在构型设计、运动模式分析以及应用方面的国内外研究现状,并对多模式机构面临的挑战与发展趋势进行了展望。
中图分类号:
于靖军, 刘凯, 孔宪文. 多模式机构研究进展[J]. 机械工程学报, 2020, 56(19): 14-27.
YU Jingjun, LIU Kai, KONG Xianwen. State of the Art of Multi-mode Mechanisms[J]. Journal of Mechanical Engineering, 2020, 56(19): 14-27.
[1] WOHLHART K. Advances in robot kinematics[M]. Dordrecht:Kluwer Academic,1996. [2] DAI J S,JONES J R. Mobility in metamorphic mechanisms of foldable/erectable kinds[J]. Journal Mechanical Design,1999,121(3):375-382. [3] DAI J S,WANG D,CUI L. Orientation and workspace analysis of the multifingered metamorphic hand-metahand[J]. IEEE Transactions on Robotics,2009,25(4):942-947. [4] 王德伦,戴建生. 变胞机构及其综合的理论基础[J]. 机械工程学报,2007,43(8):32-42. WANG Delun,DAI Jiansheng. Theoretical foundation of metamorphic mechanism and its synthesis[J]. Journal of Mechanical Engineering,2007,43(8):32-42. [5] ZHANG K T,DAI J S,FANG Y. Geometric constraint and mobility variation of Two 3SvPSv metamorphic parallel mechanisms[J]. Journal Mechanical Design,2013,135(1):11001. [6] GAN D M,DAI J S,LIAO Q Z. Mobility change in two types of metamorphic parallel mechanisms[J]. Journal of Mechanisms and Robotics,2009,1(4):041007. [7] ZHANG K T,FANG Y F,WEI G,et al. Advances in reconfigurable mechanisms and robots[M]. London:Springer,2012. [8] ZLATANOV D,BONEV I A,GOSSELIN C M. Advances in robot kinematics theory and applications[M]. Kluwer Academic Publishers,2002. [9] REFFAT S,HERVÉ J M,NAHAVANDI S,et al. Two-mode overconstrained three-DOFs rotational-translational linear-motor-based parallel kinematics mechanism for machine tool applications[J]. Robotica,2007,25(4):461-466. [10] KONG X,GOSSELIN C,RICHARD P L. Type synthesis of parallel mechanisms with multiple operation modes[J]. Journal of Mechanical Design,2007,129(6):595-601. [11] 戴建生,丁希仑,邹慧君. 变胞原理和变胞机构类型[J]. 机械工程学报,2005,41(6):7-12. DAI Jiansheng,DING Xilun,ZOU Huijun. Fundamentals and categorization of metamorphic mechanisms[J]. Journal of Mechanical Engineering,2005,41(6):7-12. [12] GALLETTI C,FANGHELLA P. Single-loop kinematotropic mechanisms[J]. Mechanism and Machine Theory,2001,36(6):743-761. [13] FANGHELLA P. Stability of branches of a kinematotropic mechanism[C]//ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots,London,UK,IEEE,2009:41-46. [14] KONG X. Reconfiguration analysis of a 3-DOF parallel mechanism using Euler parameter quaternions and algebraic geometry method[J]. Mechanism and Machine Theory,2014,74:188-201. [15] FANGHELLA P,GALLETTI C. GIANNOTTI E. Advances in robot kinematics[M]. Netherlands:Springer,2006. [16] TIAN Y,ZHANG D,YAO Y,et al. A reconfigurable multi-mode mobile parallel robot[J]. Mechanism and Machine Theory,2017,111:39-65. [17] KONG X,WANG J,YU J,et al. Reconfiguration analysis of a variable degrees-of-freedom multi-mode parallel manipulator[C]//2018 International Conference on Reconfigurable Mechanisms and Robots,Delft,Netherlands,IEEE,2018:1-7. [18] KONG X. A variable-DOF single-loop 7R spatial mechanism with five motion modes[J]. Mechanism and Machine Theory,2018,120:239-249. [19] KONG X,YU J,LI D. Reconfiguration analysis of a two degrees-of-freedom 3-4R parallel manipulator with planar base and platform[J]. Journal of Mechanisms and Robotics,2016,8(1):011019. [20] WU K,YU J,ZONG G,et al. A family of rotational parallel manipulators with equal-diameter spherical pure rotation[J]. Journal of Mechanisms and Robotics,2014,6(1):011008. [21] KONG X. Reconfiguration analysis of a 4-DOF 3-RER parallel manipulator with equilateral triangular base and moving platform[J]. Mechanism and Machine Theory,2016,98:180-189. [22] QIN Y,DAI J S,GOGU G. Multi-furcation in a derivative queer-square mechanism[J]. Mechanism and Machine Theory,2014,81:36-53. [23] ZHANG K,MÜLLER A,DAI J S. Advances in reconfigurable mechanisms and robots II[M]. Cham:Springer,2016. [24] LEE C C,HERVÉ J M. A novel discontinuously movable six-revolute mechanism[C]//2009 ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots,London,UK,IEEE,2009:58-62. [25] KONG X,HUANG C. Type synthesis of single-DOF single-loop mechanisms with two operation modes[C]//2009 ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots,London,UK,IEEE,2009. 136-141. [26] PFURNER M,KONG X,HUANG C. Complete kinematic analysis of single-loop multiple-mode 7-link mechanisms based on Bennett and overconstrained RPRP mechanisms[J]. Mechanism and Machine Theory,2014,73:117-129. [27] KONG X,JIN Y. Type synthesis of 3-DOF multi-mode translational/spherical parallel mechanisms with lockable joints[J]. Mechanism and Machine Theory,2016,96:323-333. [28] SONG C Y,CHEN Y,CHEN I M. A 6R linkage reconfigurable between the line-symmetric Bricard linkage and the Bennett linkage[J]. Mechanism and Machine Theory,2013,70:278-292. [29] SONG C Y,FENG H,CHEN Y,et al. Reconfigurable mechanism generated from the network of Bennett linkages[J]. Mechanism and Machine Theory,2015,88:49-62. [30] PFURNER M. Synthesis and motion analysis of a single-Loop 8R-chain[C]//2018 International Conference on Reconfigurable Mechanisms and Robots,Delft,Netherlands,IEEE,2018:1-7. [31] CHAI X,ZHANG C,DAI J S. A single-loop 8R linkage with plane-symmetry and bifurcation property[C]//2018 International Conference on Reconfigurable Mechanisms and Robots,Delft,Netherlands,IEEE,2018:1-8. [32] SONG C Y,CHEN Y. Multiple linkage forms and bifurcation behaviours of the double-subtractive-Goldberg 6R linkage[J]. Mechanism and Machine Theory,2012,57:95-110. [33] KONG X. Reconfiguration analysis of multimode single-Loop spatial mechanisms using dual quaternions[J]. Journal of Mechanisms and Robotics,2017,9(5):051002. [34] HUSTY M L,ZSOMBOR-MURRAY P. Advances in robot kinematics and computational geometry[M]. Dordrecht:Springer,1994:449-548. [35] ARPONEN T,PIIPPONEN S,TUOMELA J. Kinematical analysis of Wunderlich mechanism[J]. Mechanism and Machine Theory,2013,70:16-31. [36] ZHANG K,DAI J S. Advances in robot kinematics[M]. Cham:Springer,2014. [37] FENG H,CHEN Y,DAI J S,et al. Kinematic study of the general plane-symmetric Bricard linkage and its bifurcation variations[J]. Mechanism and Machine Theory,2017,116:89-104. [38] CHAI X,DAI J S. Three novel symmetric Waldron-Bricard metamorphic and reconfigurable mechanisms and their isomerization[J]. Journal of Mechanisms and Robotics,2019,11(5):051011. [39] HE X,KONG X,HAO G,et al. Advances in reconfigurable mechanisms and robots II[M]. Cham:Springer,2016. [40] 叶伟,方跃法,郭盛,等. 基于运动限定机构的可重构并联机构设计[J]. 机械工程学报,2015,51(13):137-143. YE Wei,FANG Yuefa,GUO Sheng,et al. Design of reconfigurable parallel mechanisms with discontinuously movable mechanism[J]. Journal of Mechanical Engineering,2015,51(13):137-143. [41] YE W,FANG Y,GUO Sheng,et al. Two classes of reconfigurable parallel mechanisms constructed with multi-diamond kinematotropic chain[J]. Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2016,230(18):3319-3330. [42] KONG X. Advances in reconfigurable mechanisms and robots I[M]. London:Springer,2012. [43] YE W,FANG Y,GUO S. Design and analysis of a reconfigurable parallel mechanism for multidirectional additive manufacturing[J]. Mechanism and Machine Theory,2017,112:307-326. [44] LEE C C,HERVÉ J M. Various types of RC//RC-like linkages and the discontinuously movable Koenigs joint[J]. Mechanism and Machine Theory,2016,96:255-268. [45] SCHADLBAUER J,WALTER D R,HUSTY M L. The 3-RPS parallel manipulator from an algebraic viewpoint[J]. Mechanism and Machine Theory,2014,75:161-176. [46] 刘辛军,谢福贵,汪劲松. 并联机器人机构学[M]. 北京:高等教育出版社,2018. LIU Xinjun,XIE Fugui,WANG Jinsong. Fundamental of parallel robotic mechanisms[M]. Beijing:Higher Education Press,2018. [47] 高峰. 机构学研究现状与发展趋势的思考[J]. 机械工程学报,2005,41(8):3-17. GAO Feng. Reflection on the current status and development starategy of mechanism research[J]. Journal of Mechanical Engineering,2005,41(8):3-17. [48] 于靖军,裴旭,毕树生,等. 柔性铰链机构设计方法的研究进展[J]. 机械工程学报,2010,46(13):2-13. YU Jingjun,PEI Xu,BI Shusheng,et al. State-of-arts of design method for flexure mechanisms[J]. Journal of Mechanical Engineering,2010,46(13):2-13. [49] LEE C C,HERVÉ J M. Synthesis of two kinds of discontinuously movable spatial 7R mechanisms through the group algebraic structure of displacement set[C]//Proceedings of 11th IFToMM World Congress in Mechanism and Machine Science,Tianjin,IFToMM,2004:197-201. [50] GOGU G. Maximally regular T2R1-type parallel manipulators with bifurcated spatial motion[J]. Journal of Mechanisms Robotics,2011,3(1):011010. [51] GOGU G. T2R1-type parallel manipulators with bifurcated planar-spatial motion[J]. European Journal of Mechanics A/Solids,2012,33:1-11. [52] KONG X. Type synthesis of 3-DOF parallel manipulators with both a planar operation mode and a spatial translational operation mode[J]. Journal of Mechanisms and Robotics,2013,5(4):041015. [53] YE W,FANF Y,ZHANG K,et al. A new family of reconfigurable parallel mechanisms with diamond kinematotropic chain[J]. Mechanism and Machine Theory,2014,74:1-9. [54] 刘超,巢鑫迪,姚燕安. 多模式空间6R地面移动机构[J]. 机械工程学报,2019,55(23):38-47. LIU Chao,CHAO X,YAO Y. Multi-mode spatial 6R ground mobile mechanism[J]. Journal of Mechanical Engineering,2019,55(23):38-47. [55] LI Q,HERVÉ J M. Parallel mechanisms with bifurcation of schoenflies motion[J]. IEEE Transactions on Robotics,2009,25(1):158-164. [56] LÓPEZ-CUSTODIO P C,RICO J M,CERVANTES-SÁNCHEZ J J,et al. Reconfigurable mechanisms from the intersection of surfaces[J]. Journal of Mechanisms and Robotics,2016,8(4):021029. [57] ZENG Q,EHMANN K F. Design of parallel hybrid-loop manipulators with kinematotropic property and deployability[J]. Mechanism and Machine Theory,2014,71:1-26. [58] 石志新,叶梅艳,罗玉峰,等. 四自由度两模式并联机构结构综合与位置分析[J]. 农业机械学报,2017,48(4):383-389. SHI Zhixin,YE Meiyan,LUO Yufeng,et al. Type synthesis and position analysis of 4-DOF parallel mechanisms with two operation modes[J]. Transactions of the Chinese Society for Agricultural Machinery,2017,48(4):383-389. [59] LEE C C,HERVÉ JM. Discontinuously movable 8R mechanisms with an infinity of bifurcations[C]//Proceedings of 12th IFToMM World Congress in Mechanism and Machine Science. Besancon,IFToMM,2007:198-203. [60] HUANG C,TSEN G R,KONG X. New trends in mechanism science[M]. Dordrecht:Spring,2010. [61] SCHATZ P. Rhythmusforschung und technik[M]. Germany,Stuttgart:Verlag freies Geistesleben,1975. [62] WANG J,KONG X. Deployable polyhedron mechanisms constructed by connecting spatial single-loop linkages of different types and/or in different sizes using S joints[J]. Mechanism and Machine Theory,2018,124:211-225. [63] LÓPEZ-CUSTODIO P C,MÜLLER A,DAI J S. The double-Koenigs mechanism-A spatial linkage with cusp singularities and multiple branches in the configuration space[C]//2018 International Conference on Reconfigurable Mechanisms and Robots,Delft,Netherlands,IEEE,2018:1-7. [64] WANG J,KONG X. Deployable mechanisms constructed by connecting orthogonal Bricard linkages,8R or 10R single-loop linkages using S joints[J]. Mechanism and Machine Theory,2018,120:178-191. [65] SONG Y,MA X,DAI J S. A novel 6R metamorphic mechanism with eight motion branches and multiple furcation points[J]. Mechanism and Machine Theory,2019,142:103598. [66] WOHLHART K. Multifunctional 7R linkages[C]//Proceedings of the International Symposium on Mechanisms and Machine Theory,AzCIFToMM,Izmir,Turkey,2010:85-91. [67] NURAHMI L,CARO S,WENGER P. Recent advances in mechanism design for robotics[M]. Cham:Springer,2015. [68] NURAHMI L,CARO S,WENGER P,et al. Reconfiguration analysis of a 4-RUU parallel manipulator[J]. Mechanism and Machine Theory,2016,96:269-289. [69] CARBOMARI L,CALLEGARI M. Latest advances in robot kinematics[M]. Dordrecht:Springer,2012. [70] CARBONARI L,CALLEGARI M,PALMIERI G,et al. A new class of reconfigurable parallel kinematic machines[J]. Mechanism and Machine Theory,2014,79:173-183. [71] RUGGIU M,KONG X. Mobility and kinematic analysis of a parallel mechanism with both PPR and planar operation modes[J]. Mechanism and Machine Theory,2012,55:77-90. [72] 叶伟,方跃法,郭盛,等. 一种新型并联机构的运动分岔特性及运动学分析[J]. 机械工程学报,2013,49(13):8-16. YE Wei,FANG Yuefa,GUO Sheng,et al. Bifurcated motion and kinematics of novel parallel mechanism[J]. Journal of Mechanical Engineering,2013,49(13):8-16. [73] ZHANG K,DAI J S. Geometric constraints and motion branch variations for reconfiguration of single-loop linkages with mobility one[J]. Mechanism and Machine Theory,2016,106:16-29. [74] 黄真,赵永生,赵铁石. 高等空间机构学[M]. 北京:高等教育出版社,2014. HUANG Zhen,ZHAO Yongsheng,ZHAO Tieshi. Advanced spatial mechanism[M]. Beijing:Higher Education Press,2014. [75] PEISSACH E. Advances in robot kinematics:Analysis and control[M]. Dordrecht:Springer,1998. [76] ROESCHEL O. Advances in robot kinematics[M]. Dordrecht:Kluwer Academic Publishers,2000. [77] ZLATANOV D,BONEV I A,GOSSELIN C M. Constraint singularities of parallel mechanisms[C]//Proceedings of the 2002 IEEE International Conference on Robotics Automation Washington,DC,2002:496-502. [78] LEE C C,HERVÉ J M. Discontinuously movable seven-link mechanisms via group-algebraic approach[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2005,219(6):577-587. [79] WALTER D R,HUETY M L,PFURNER M. Chapter A:complete kinematic analysis of the SNU 3-UPU parallel manipulator[J]. Contemporary Mathematics,American Mathematical Society,2009,496:331-346. [80] NAYAK A,CARO S,WENGER P. Comparison of 3-[PP]S parallel manipulators based on their singularity free orientation workspace,parasitic motions and complexity[J]. Mechanism and Machine Theory,2018,129:293-315. [81] SELIG J M,HUSTY M. Half-turns and line symmetric motions[J]. Mechanism and Machine Theory,2011,46:156-167. [82] HUSTY M L,PFURNER M,SCHRÖCHER H. A new and efficient algorithm for the inverse kinematics of a general serial 6R manipulator[J]. Mechanism and Machine Theory,2007,42(1):66-81. [83] HE X,KONG X,CHABLAT D,et al. Kinematic analysis of a single-loop reconfigurable 7R mechanism with multiple operation modes[J]. Robotica 2014,32(7):1171-1188. [84] STIGGER T,NAYAK A,CARO S,et al. Advances in robot kinematics 2018[M]. Bologna:Springer,2018. [85] LIU K,KONG X,YU J. Operation mode analysis of lower-mobility parallel mechanisms based on dual quaternions[J]. Mechanism and Machine Theory,2019,142:103557. [86] GOSSELIN C M,MERLET J P. On the direct kinematics of planar parallel manipulators:special architectures and number of solutions[J]. Mechanism and Machine Theory,1994,29(8):1083-1097. [87] 孔宪文,杨廷力. 解析式6-SPS并联机器人机构尺度类型综合与特殊位形分析[J]. 高技术通讯,1996(6):17-20. KONG Xianwen,YANG Tingli. Dimensional type systhesis and special configuration analysis of analytic 6-SPS parallel robots[J]. Hi-Tech Letters,1996(6):17-20. [88] COSTE M,DEMDAH K M. Extra modes of operation and self-motions in manipulators designed for schoenflies motion[J]. Journal of Mechanisms and Robotics,2015,7(4):041020. [89] NAYAK A,STIGGER T,HUSTY M L,et al. Operation mode analysis of 3-RPS parallel manipulators based on their design parameters[J]. Computer Aided Geometric Design,2018,63:122-134. [90] KONG X. Classification of a class of 3-RER parallel manipulators using Gröbner cover and primary decomposition of ideals[C]//Proceedings of the ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference,CA,Anaheim,2019:1-10. [91] MONRES,A,WIBMER M. Software for discussing parametric polynomial systems:The Gröbner cover[C]//International Congress on Mathematical Software,2014:406-413. [92] BAKER J E. The axodes of the Bennett linkage[J]. Mechanism and Machine Theory,2001,36:105-116. [93] FIGLIOLINI G,REA P,ANGELES J. The Synthesis of the Axodes of RCCC Linkages[J]. Journal of Mechanisms and Robotics,2016,8(2):021011. [94] SCHADLBAUER J,NURAHMI L,HUSTY M L. Interdisciplinary applications in kinematics[M]. Cham:Springer,2015. [95] 于靖军,刘辛军,丁希仑. 机器人机构学的数学基础[M]. 北京:机械工业出版社,2015. YU Jingjun,LIU Xinjun,DING Xilun. Mathematic foundation of mechanisms and robotics[M]. Beijing:China Machine Press,2015. [96] CHEN Z,DING H,CAO W,et al. Axodes analysis of the multi DOF parallel mechanisms and parasitic motion[C]//Proceedings of the ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference,Portland,Oregon,ASME,2013:1-9. [97] HE C,WANG S,WANG X,et al. Advance in reconfigurable mechanisms and robots Ⅰ[M]. London:Springer,2012. [98] TSENG T,LIN Y,HSU W,et al. A novel reconfigurable gravity balancer for lower-limb rehabilitation with switchable hip/knee-only exercise[J]. Journal of Mechanisms and Robotics,2017,9(4):041002. [99] NURAHMI L,CARO S,SOLICHIN M. A novel ankle rehabilitation device based on a reconfigurable 3-RPS parallel manipulator[J]. Mechanism and Machine Theory,2019,134:135-150. [100] BAIGUNCHEKOV Z,IBRAYEV S,IZMAMBETOV M,et al. Synthesis of reconfigurable positioning parallel manipulator of a class RoboMech[C]//2018 International Conference on Reconfigurable Mechanisms and Robots,Netherlands,Delft,IEEE,2018:1-6. [101] AGOFINO A,SUNSPIRAL V,ATKINSON D. Super ball bot-structures planetary landing and exploration[C]//NASA Innovative Advance Concepts Phase Ⅰ Conference,Chicago,2013:1-89. [102] TIAN Y,YAO Y,WANG J. A rolling 8-bar linkage mechanism[J]. Journal of Mechanisms and Robotics,2015,7(4):041002. [103] DING W,RUAN Q,YAO Y. Design and locomotion analysis of a novel deformable mobile robot with two spatial reconfigurable platforms and three kinematic chains[J]. Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2017,231(8):1481-1499. [104] TIAN Y,YAO Y,DING W,et al. Design and locomotion analysis of a novel deformable mobile robot with worm-like,self-crossing and rolling motion[J]. Robotica,2016,34(9):1961-1978. [105] LI Y,YAO Y,HE Y. Design and analysis of a multi-mode mobile robot based on a parallel mechanism with branch variation[J]. Mechanism and Machine Theory,2018,130:276-300. [106] AZULAY H,MILLS J K,BENHABIB B. A multi-tier design methodology for reconfigurable milling machines[J]. Journal of Manufacturing Science and Engineering,2014,136(4):041004. [107] CHABLAT D,KONG X,ZHANG C. Kinematics,workspace,and singularity analysis of a parallel robot with five operation modes[J]. Journal of Mechanisms and Robotics,2018,10(3):035001. |
[1] | 刘伟, 刘宏昭. 非结式消元7R双环球面机构运动学位移分析[J]. 机械工程学报, 2024, 60(7): 45-53. |
[2] | 高强, 王健, 张严, 郑旭阳, 吕昊, 殷国栋. 拓扑优化方法及其在运载工程中的应用与展望[J]. 机械工程学报, 2024, 60(4): 369-390. |
[3] | 陈洋睿, 刘显贵, 罗熙, 李怡, 游铭娴, 陈立沛. 挂载式悬架结构设计及防侧翻性能验证[J]. 机械工程学报, 2024, 60(19): 187-198. |
[4] | 田大可, 石祖玮, 金路, 郭宏伟, 刘荣强, 孙梓雄. 六棱柱模块化可展开天线索网结构设计与分析[J]. 机械工程学报, 2024, 60(1): 262-273. |
[5] | 杨三锋, 黄向明, 明阳, 任莹晖. 新型磁流变-剪切增稠阻尼器的力学模型及试验研究[J]. 机械工程学报, 2023, 59(16): 418-426. |
[6] | 严鲁涛, 王琦, 李海源, 张勤俭. 基于形状记忆合金驱动的连续体机器人路径规划[J]. 机械工程学报, 2023, 59(15): 50-61. |
[7] | 王衍, 谢雪非, 徐慧, 黄周鑫, 何一鸣, 杨怀石, 胡琼. 新型非接触式自冲击密封结构设计与性能分析[J]. 机械工程学报, 2023, 59(15): 204-215. |
[8] | 乔舒斐, 郝云晓, 权龙, 葛磊, 夏连鹏. 机电液混合驱动直线执行器构型设计与性能测试[J]. 机械工程学报, 2022, 58(5): 212-222. |
[9] | 袁小庆, 姬俊杰, 刘宇轩, 周彤, 王文东. 主被动结合的上下肢一体化助力外骨骼机器人的设计与效能评估[J]. 机械工程学报, 2022, 58(21): 27-37. |
[10] | 魏俊, 贾维涵, 刘承磊, 张建军, 黄海晶, 郭士杰. 驱动支链完全解耦的可重构踝关节康复并联机构型综合[J]. 机械工程学报, 2022, 58(19): 45-56. |
[11] | 史创, 李伟杰, 郭宏伟, 陶磊, 刘荣强, 邓宗全. 空间大型结构体在轨组装单元及对接接口研究[J]. 机械工程学报, 2022, 58(1): 52-60. |
[12] | 闫辉垠, 李传扬, 郭宏伟, 郭文尚, 刘荣强, 唐德威, 李兵. 面向空间应用的3-R(SRS)RP多环机构操作臂结构设计及逆运动学分析[J]. 机械工程学报, 2021, 57(7): 1-9. |
[13] | 轩福贞, 朱明亮, 王国彪. 结构疲劳百年研究的回顾与展望[J]. 机械工程学报, 2021, 57(6): 26-51. |
[14] | 赵京, 王承运, 张自强, 龚世秋. 基于动作基元的人臂达点运动模式[J]. 机械工程学报, 2021, 57(19): 70-78. |
[15] | 程涛涛, 王志平, 戴士杰, 丁坤英, 马祥. 航空发动机陶瓷基高温封严涂层研究进展[J]. 机械工程学报, 2021, 57(10): 126-136,147. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||