机械工程学报 ›› 2020, Vol. 56 ›› Issue (19): 2-13.doi: 10.3901/JME.2020.19.002
• 特邀专栏:纪念张启先院士诞辰95周年 • 上一篇 下一篇
陈焱1,2
收稿日期:
2020-06-30
修回日期:
2020-08-10
出版日期:
2020-10-05
发布日期:
2020-11-17
作者简介:
陈焱,女,1974年出生,博士,教授,博士研究生导师。主要研究方向为机构学、折展结构、超材料的基础理论及其在航空航天结构、机器人、医疗微结构中的工程应用。E-mail:yan_chen@tju.edu.cn
基金资助:
CHEN Yan1,2
Received:
2020-06-30
Revised:
2020-08-10
Online:
2020-10-05
Published:
2020-11-17
摘要: 超材料是一类新型人工复合材料或复合结构,特殊的微观或宏观内部结构设计使它们具有自然材料不具备的超常物理性质。超材料的发展经历了二维电磁超表面到三维机械、热学、声学、光学超材料的发展之后,正进入可编程、可调控的阶段,近年来涌现出各种各样具有大变形能力的超材料,以实现物理性能的设计预期与主被动适应。对大变形超材料的设计、功能、制造等方面的发展现状进行了简要的综述,分析这类超材料研究当前存在的主要问题与发展趋势,为多功能超材料的编程与调控研究提供借鉴与参考。
中图分类号:
陈焱. 基于机构运动的大变形超材料[J]. 机械工程学报, 2020, 56(19): 2-13.
CHEN Yan. Review on Kinematic Metamaterials[J]. Journal of Mechanical Engineering, 2020, 56(19): 2-13.
[1] DUDLEY R A,FIDDY M A. Engineered materials and metamaterials:Design and fabrication[M]. SPIE,2017. [2] KADIC M,MILTON G W,HECKE M,et al. 3D metamaterials[J]. Nature Reviews Physics,2019,1(3):198-210. [3] ZHELUDEV N I. The road ahead for metamaterials[J]. Science,2010,328(5978):582-583. [4] SONG W,ZHOU Z,WANG L,et al. Constructing repairable meta-structures of ultra-broad-band electromagnetic absorption from 3D printed patterned shells[J]. ACS Applied Materials & Interfaces,2017,9(49):43179-43187. [5] CHO S J,KIM B S,MIN D K,et al. Honeycomb-shaped meta-structure for minimizing noise radiation and resistance to cooling fluid flow of home appliances[J]. Composite Structures,2016,155:1-7. [6] SERVICE R F,CHO A. Strange new tricks with light[J]. Science,2010,330(6011):1622. [7] BAKER B. DoD Science & Technology Priorities[R]. 2014. [8] 国务院. 国务院关于印发"十三五"国家科技创新规划的通知[R]. 2016. State Council. State Council notice on printing and distributing the national thirteenth five-year plan for national science and technology innovation[R]. 2016. [9] 彭训文. "暗战"超材料,中国如何胜出[N]. 人民日报海外版,2015-05-02(8). PENG Xunwen. "Dark War" metamaterials,how China wins[N]. People's Daily Overseas Edition,2015-05-02(8). [10] TUCKER P. The multiple applications of the military's mad science projects[N]. https://www.defenseone.com/technology/2014/05/four-darpa-projects-could-be-bigger-internet/84856/. [11] VESELAGO V G. The electrodynamics of substances with simultaneously negative values of permittivity and permeability[J]. Soviet Physics Uspekhi,1968,10(4):509-514. [12] SHELBY R A. Experimental verification of a negative index of refraction[J]. Science,2001,292(5514):77-79. [13] SREEKANTH K V,ZENG S,SHANG J,et al. Excitation of surface electromagnetic waves in a graphene-based Bragg grating[J]. Scientific Reports,2012,2:737. [14] ALICI K B,ÖZBAY E. Radiation properties of a split ring resonator and monopole composite[J]. Physica Status Solidi(b),2007,244(4):1192-1196. [15] WU B I,WANG W,PACHECO J,et al. A study of using metamaterials as antenna substrate to enhance gain[J]. Progress in Electromagnetics Research,2005,51:295-328. [16] LI W,VALENTINE J. Metamaterial perfect absorber based hot electron photodetection[J]. Nano Letters,2014,14(6):3510-3514. [17] VORA A,GWAMURI J,PALA N,et al. Exchanging Ohmic losses in metamaterial absorbers with useful optical absorption for photovoltaics[J]. Scientific Reports,2014,4:4901. [18] GAO L,KIM Y,VAZQUEZ-GUARDADO A,et al. Negative index materials:Materials selections and growth conditions for large-area,multilayered,visible negative index metamaterials formed by nanotransfer printing[J]. Advanced Optical Materials,2014,2(3):255-255. [19] PAGE J. Metamaterials:Neither solid nor liquid[J]. Nature Materials,2011,10(8):565-566. [20] LAI Y,WU Y,SHENG P,et al. Hybrid elastic solids[J]. Nature Materials,2011,10(8):620-624. [21] GUENNEAU,SÉBASTIEN,MOVCHAN A,et al. Acoustic metamaterials for sound focusing and confinement[J]. New Journal of Physics,2007,9(11):399-399. [22] ZHU J,CHRISTENSEN J,JUNG J,et al. A holey-structured metamaterial for acoustic deep-subwavelength imaging[J]. Nature Physics,2010,7(1):52-55. [23] LI J,FOK L,YIN X,et al. Experimental demonstration of an acoustic magnifying hyperlens[J]. Nature Materials,2009,8(12):931-934. [24] FARHAT M,ENOCH S,GUENNEAU S,et al. Broadband cylindrical acoustic cloak for linear surface waves in a fluid[J]. Physical Review Letters,2008,101(13):126-129. [25] TAKENAKA K. Negative thermal expansion materials:Technological key for control of thermal expansion[J]. Science & Technology of Advanced Materials,2012,13(1):013001. [26] WU L,LI B,ZHOU J. Isotropic negative thermal expansion metamaterials[J]. ACS Applied Materials & Interfaces,2016,8(27):17721-17727. [27] PARSONS E M. Lightweight cellular metal composites with zero and tunable thermal expansion enabled by ultrasonic additive manufacturing:Modeling,manufacturing,and testing[J]. Composite Structures,2019,223:110656. [28] RAMINHOS J S,BORGES J P,VELHINHO A. Development of polymeric anepectic meshes:Auxetic metamaterials with negative thermal expansion[J]. Smart Materials and Structures,2019,28(4):045010. [29] AI L,GAO X L. Three-dimensional metamaterials with a negative Poisson's ratio and a non-positive coefficient of thermal expansion[J]. International Journal of Mechanical Sciences,2018,135:101-113. [30] LI X,GAO L,ZHOU W,et al. Novel 2D metamaterials with negative Poisson's ratio and negative thermal expansion[J]. Extreme Mechanics Letters,2019,30:100498. [31] THILL C L,ETCHES J,BOND I,et al. Morphing skins[J]. The Aeronautical Journal,2008,112(1129):117-139. [32] BERTAGNE C L,COGNATA T J,SHETH R B,et al. Testing and analysis of a morphing radiator concept for thermal control of crewed space vehicles[J]. Applied Thermal Engineering,2017,124:986-1002. [33] CHEN B C,SILVA E C N,KIKUCHI N. Advances in computational design and optimization with application to MEMS[J]. International Journal for Numerical Methods in Engineering,2001,52(1-2):23-62. [34] TOROPOVA M M,STEEVES C A. Bimaterial lattices as thermal adapters and actuators[J]. Smart Materials and Structures,2016,25(11):115030. [35] BAXEVANIS T,PARRINELLO A F,LAGOUDAS D C. On the driving force for crack growth during thermal actuation of shape memory alloys[J]. Journal of the Mechanics and Physics of Solids,2016,89:255-271. [36] TOROPOVA M M,STEEVES C A. Adaptive bimaterial lattices to mitigate thermal expansion mismatch stresses in satellite structures[J]. Acta Astronautica,2015,113:132-141. [37] ZHENGCHUN D,MENGRUI Z,ZHIGUO W,et al. Design and application of composite platform with extreme low thermal deformation for satellite[J]. Composite Structures,2016,152:693-703. [38] JANG D,MEZA L R,GREER F,et al. Fabrication and deformation of three-dimensional hollow ceramic nanostructures[J]. Nature Materials,2013,12(10):893-898. [39] YU H,WU W,ZHANG J,et al. Drastic tailorable thermal expansion chiral planar and cylindrical shell structures explored with finite element simulation[J]. Composite Structures,2019,210:327-338. [40] SILVERBERG J L,EVANS A A,MCLEOD L,et al. Using origami design principles to fold reprogrammable mechanical metamaterials[J]. Science,2014,345(6197):647-650. [41] LIU B,SILVERBERG J L,EVANS A A,et al. Topological kinematics of origami metamaterials[J]. Nature Physics,2018,14(8):811-815. [42] HAGIWARA I. Current trends and issues of origami engineering[J]. Communications in Computer and Information Science,2012,326:259-268. [43] MA J,YOU Z. Energy absorption of thin-walled beams with a pre-folded origami pattern[J]. Thin-Walled Structures,2013,73:198-206. [44] ZHENG X,LEE H,WEISGRABER T H,et al. Ultralight,ultrastiff mechanical metamaterials[J]. Science,2014,344(6190):1373-1377. [45] VALDEVIT L,JACOBSEN A J,GREER J R,et al. Protocols for the optimal design of multi-functional cellular structures:From hypersonics to micro-architected materials[J]. Journal of the American Ceramic Society,2011,94:s15-s34. [46] SCHAEDLER T A,RO C J,SORENSEN A E,et al. Designing metallic microlattices for energy absorber applications[J]. Advanced Engineering Materials,2014,16(3):276-283. [47] MALONEY K J,ROPER C S,JACOBSEN A J,et al. Microlattices as architected thin films:Analysis of mechanical properties and high strain elastic recovery[J]. Apl Materials,2013,1(2):022106. [48] VALDEVIT L,PANTANO A,STONE H A,et al. Optimal active cooling performance of metallic sandwich panels with prismatic cores[J]. International Journal of Heat & Mass Transfer,2006,49(21-22):3819-3830. [49] MAOQIANG L,XIN S. Microstructure and thermal conductivity of flexible and micro-porous calcium silicate insulation material[J]. Rare Metal Materials & Engineering,2007,36(8):575-578. [50] BAUDIS S,NEHL F,LIGON S C,et al. Elastomeric degradable biomaterials by photopolymerization-based CAD-CAM for vascular tissue engineering[J]. Biomedical Materials,2011,6(5):055003. [51] ARCAUTE K,MANN B K,WICKER R B. Fabrication of off-the-shelf multilumen poly (ethylene glycol) nerve guidance conduits using stereolithography[J]. Tissue Engineering Part C Methods,2010,17(1):27-38. [52] BERTOLDI K,VITELLI V,CHRISTENSEN J,et al. Flexible mechanical metamaterials[J]. Nature Reviews Materials,2017,2:17066. [53] DIELEMAN P,VASMEL N,WAITUKAITIS S,et al. Jigsaw puzzle design of pluripotent origami[J]. Nature Physics,2020,16(1):63-68. [54] PENG R,MA J,CHEN Y. The effect of mountain-valley folds on the rigid foldability of double corrugated pattern[J]. Mechanism and Machine Theory,2018,128:461-474. [55] PRATAPA P P,LIU K,PAULINO G H. Geometric mechanics of origami patterns exhibiting Poisson's ratio switch by breaking mountain and valley assignment[J]. Physical Review Letters,2019,122(15):155501. [56] HAGIWARA I. From origami to origamics[J]. The Japan Journal,2008,5(3):22-25. [57] WANG Z,JING L,YAO K,et al. Origami-based reconfigurable metamaterials for tunable chirality[J]. Advanced Materials,2017,29(27):1700412.1-1700412.7. [58] NAUROZE S A,NOVELINO L S,TENTZERIS M M,et al. Continuous-range tunable multilayer frequency-selective surfaces using origami and inkjet printing[J]. Proceedings of the National Academy of Sciences,2018,115(52):13210-13215. [59] ZHANG M,YANG J,ZHU R. Flexural wave control via origami-based elastic metamaterials[C]//Health Monitoring of Structural and Biological Systems XIII. International Society for Optics and Photonics,2019:109720Q. [60] BOATTI E,VASIOS N,BERTOLDI K. Origami metamaterials for tunable thermal expansion[J]. Advanced Materials,2017,29(26):1700360. [61] WANG K,CHEN Y. Folding a patterned cylinder by rigid origami[J]. Origami,2011,5:265-276. [62] YOU Z. Folding structures out of flat materials[J]. Science,2014,345(6197):623-624. [63] FUCHI K. An origami tunable metamaterial[J]. Journal of Applied Physics,2012,111(8):1-7. [64] SCHENK M,GUEST S D. Geometry of Miura-folded metamaterials[J]. Proceedings of the National Academy of Sciences,2013,110(9):3276-3281. [65] MA J,HOU D,CHEN Y,et al. Quasi-static axial crushing of thin-walled tubes with a kite-shape rigid origami pattern:Numerical simulation[J]. Thin Walled Structures,2016,100:38-47. [66] MA J,SONG J,CHEN Y. An origami-inspired structure with graded stiffness[J]. International Journal of Mechanical Sciences,2018,136:134-142. [67] LIU K,TACHI T,PAULINO G H. Invariant and smooth limit of discrete geometry folded from bistable origami leading to multistable metasurfaces[J]. Nature Communications,2019,10(1):4238. [68] EVGUENI T,FILIPOV,TOMOHIRO,et al. Origami tubes assembled into stiff,yet reconfigurable structures and metamaterials[J]. Proceedings of the National Academy of Sciences of the United States of America,2015,112(40):12321-6. [69] SENGUPTA S,LI S. Harnessing the anisotropic multistability of stacked-origami mechanical metamaterials for effective modulus programming[J]. Journal of Intelligent Material Systems and Structures,2018,29(14):2933-2945. [70] WANG L C,SONG W L,ZHANG Y J,et al. Active reconfigurable tristable square-twist origami[J]. Advanced Functional Materials,2020:1909087. [71] MUKHOPADHYAY T,MA J,FENG H,et al. Programmable stiffness and shape modulation in origami materials:Emergence of a distant actuation feature[J]. Applied Materials Today,2020,19:100537. [72] ZHANG J,LU G,WANG Z,et al. Large deformation of an auxetic structure in tension:Experiments and finite element analysis[J]. Composite Structures,2018,184:92-101. [73] LAKES R. Foam structures with a negative Poisson's ratio[J]. Science,1987,235:1038-1041. [74] KHAN K A,AL-MANSOOR S,KHAN S Z,et al. Piezoelectric metamaterial with negative and zero Poisson's ratios[J]. Journal of Engineering Mechanics,2019,145(12):04019101. [75] YANG L,HARRYSSON O,WEST H,et al. Mechanical properties of 3D re-entrant honeycomb auxetic structures realized via additive manufacturing[J]. International Journal of Solids & Structures,2015,69-70:475-490. [76] FLORIJN,BASTIAAN,COULAIS,et al. Programmable mechanical metamaterials[J]. Physical Review Letters,113(17):175503. [77] WANG H,ZHANG Y,LIN W,et al. A novel two-dimensional mechanical metamaterial with negative Poisson's ratio[J]. Computational Materials Science,2020,171:109232. [78] ZHANG Y,LI B,ZHENG Q S,et al. Programmable and robust static topological solitons in mechanical metamaterials[J]. Nature Communications,2019,10(1):5605. [79] LIN S,XIE Y M,LI Q,et al. A Kirigami approach to forming a synthetic buckliball[J]. Scientific Reports,2016,6:33016. [80] ZHANG H,CHENG X,YAN D,et al. A nonlinear mechanics model of soft network metamaterials with unusual swelling behavior and tunable phononic band gaps[J]. Composites Science and Technology,2019,183:107822. [81] PAULOSE J,MEEUSSEN A S,VITELLI V. Selective buckling via states of self-stress in topological metamaterials[J]. Proceedings of the National Academy of Sciences of the United States of America,2015,112(25):7639. [82] SHIM J,PERDIGOU C,CHEN E R,et al. Buckling-induced encapsulation of structured elastic shells under pressure[J]. Proceedings of the National Academy of Sciences of the United States of America,2012,109(16):5978-5983. [83] BABAEE S,SHIM J,WEAVER J C,et al. 3D soft metamaterials with negative poisson's ratio[J]. Advanced Materials,2013,25(36):5044-5049. [84] FRENZEL T,KADIC M,WEGENER M. Three-dimensional mechanical metamaterials with a twist[J]. Ence,2017,358(6366):1072-1074. [85] WANG Q,YANG Z,LU Z,et al. Mechanical responses of 3D cross-chiral auxetic materials under uniaxial compression[J]. Materials & Design,2019,186:108226. [86] ZHAKATAYEV A,KAPPASSOV Z,VAROL H A. Analytical modeling and design of negative stiffness honeycombs[J]. Smart Materials and Structures,2020,29(4):045024. [87] COULAIS C,TEOMY E,DE REUS K,et al. Combinatorial design of textured mechanical metamaterials[J]. Nature,2016,535(7613):529-532. [88] CAI C,ZHOU J,WU L,et al. Design and numerical validation of quasi-zero-stiffness metamaterials for very low-frequency band gaps[J]. Composite Structures,2020,236:111862. [89] PAN F,LI Y,LI Z,et al. 3D pixel mechanical metamaterials[J]. Advanced Materials,2019,31(25):1900548.1-1900548.8. [90] HAGHPANAH B,SALARI-SHARIF L,POURRAJAB P,et al. Multistable shape-reconfigurable architected materials[J]. Advanced Materials,2016,28(36):8065-8065. [91] GRIMA J N,EVANS K E. Auxetic behavior from rotating squares[J]. Journal of Materials Science Letters,2000,19(17):1563-1565. [92] CORENTIN,COULAIS,ALBERICO,et al. Multi-step self-guided pathways for shape-changing metamaterials[J]. Nature,2018,561(7724):512-515. [93] KADIC M. On the practicability of pentamode mechanical metamaterials[J]. Applied Physics Letters,2012,100(19):1-4. [94] OVERVELDE J T B,DE JONG T A,SHEVCHENKO Y,et al. A three-dimensional actuated origami-inspired transformable metamaterial with multiple degrees of freedom[J]. Nature Communications,2016,7:10929. [95] O'ROURKE J. How to fold it:The mathematics of linkages,origami and polyhedra[M]. Cambridge Univ. Press,2011. [96] ROCKLIN D Z,ZHOU S,SUN K,et al. Transformable topological mechanical metamaterials[J]. Nature Communications,2017,8(1):1-9. [97] CHEN Y,PENG R,YOU Z. Origami of thick panels[J]. Science,2015,349(6246):396-400. [98] SILVERBERG J L,NA J H,EVANS A A,et al. Origami structures with a critical transition to bistability arising from hidden degrees of freedom[J]. Nature Materials,2015,14(4):389-393. [99] YOU Z,CHEN Y. Motion structures:Deployable structural assemblies of mechanisms[M]. Taylor and Francis,2011. [100] CHEN Y,YOU Z,TARNAI T. Threefold-symmetric Bricard linkages for deployable structures[J]. International Journal of Solids and Structures,2005,42(8):2287-2301. [101] CHEN Y,YANG F,YOU Z. Transformation of polyhedrons[J]. International Journal of Solids and Structures,2018,138:193-204. [102] SONG X,GUO H,LIU R,et al. Mobility analysis of the threefold-symmetric Bricard linkage and its network[J]. Journal of Mechanisms and Robotics,2020,12(1):011013. [103] WANG J,KONG X. A novel method for constructing multimode deployable polyhedron mechanisms using symmetric spatial compositional units[J]. Journal of Mechanisms and Robotics 2019,11(2):020907. [104] ZHANG X,CHEN Y. Mobile assemblies of Bennett linkages from four-crease origami patterns[J]. Proceedings of the Royal Society A,2018,474:20170621. [105] SONG X,DENG Z,GUO H,et al. Networking of Bennett linkages and its application on deployable parabolic cylindrical antenna[J]. Mechanism and Machine Theory,2017,109:95-125. [106] CHEN Y,PENG R,YOU Z. Origami of thick panels[J]. Science,2015,349(6246):396-400. [107] CHEN Y,LV W,PENG R,et al. Mobile assemblies of four-spherical-4R-integrated linkages and the associated four-crease-integrated rigid origami patterns[J]. Mechanism and Machine Theory,2019,142:103613. [108] AVILA A,MAGLEBY S P,LANG R J,et al. Origami fold states:Concept and design tool[J]. Mechanical Sciences,2019,10:91-105. [109] PENG R,MA J,CHEN Y. The effect of mountain-valley folds on the rigid foldability of double corrugated pattern[J]. Mechanism and Machine Theory,2018,128:461-474. [110] TACHI T,HULL T C. Self-foldability of rigid origami[J]. Journal of Mechanisms & Robotics,2017,9(2):021008. [111] HOWELL L L. Compliant mechanisms[M]. Wiley-Interscience,2001. [112] CHEN G,MA F,HAO G,et al. Modeling large deflections of initially curved beams in compliant mechanisms using chained beam-constraint-model[J]. Journal of Mechanisms and Robotics,2018,11:1. [113] HAO G,YU J,LI H. A brief review on nonlinear modeling methods and applications of compliant mechanisms[J]. Frontiers of Mechanical Engineering,2016,11(2):119-128. [114] HOWELL L L. Handbook of compliant mechanisms[M]. Hoboken:Wiley,2013. [115] ZHANG Q,YAN D,ZHANG K,et al. Pattern transformation of heat-shrinkable polymer by three-dimensional (3D) printing technique[J]. Scientific Reports,2015,5:8936. [116] KOTIKIAN A,TRUBY R L,BOLEY J W,et al. 3D printing of liquid crystal elastomeric actuators with spatially programed nematic order[J]. Advanced Materials,2018,30(10):1706164.1-1706164.6. [117] WONG J,GONG A T,DEFNET P A,et al. 3D printing ionogel auxetic frameworks for stretchable sensors[J]. Advanced Materials Technologies,2019,4(9):1. [118] TAO H,GIBERT J. Multifunctional mechanical metamaterials with embedded triboelectric nanogenerators[J]. Advanced Functional Materials,2020(1):2001720. [119] 周济,李龙土. 超材料技术及其应用展望[J]. 中国工程科学,2018,20(6):69-74. ZHOU Ji,LI Longtu. Metamaterial technology and its application prospects[J]. Strategic Study of Chinese Academy of Engineering,2018,20(6):69-74. [120] 房丰洲. 原子及近原子尺度制造——制造技术发展趋势[J]. 中国机械工程,2020,31(9):1009-1021. FANG Fengzhou. Atomic and near-atomic manufacturing-the development trend of manufacturing technology[J]. China Mechanical Engineering,2020,31(9):1009-1021. [121] ZHANG Y,YAN Z,NAN K,et al. A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes[J]. Proceedings of the National Academy of ences,2015,112(38):11757. [122] YAN Z,ZHANG F,WANG J,et al. Controlled mechanical buckling for origami-Inspired construction of 3D microstructures in advanced materials[J]. Advanced Functional Materials,2016,26(16):2586-2586. [123] BODAGHI M,SERJOUEI A,ZOLFAGHARIAN A,et al. Reversible energy absorbing meta-sandwiches by 4D FDM printing[J]. International Journal of Mechanical Sciences,2020,173:105451. [124] XU W,YU D,WEN J. Simple meta-structure that can achieve the quasi-perfect absorption throughout a frequency range of 200-500 Hz at 350℃[J]. Applied Physics Express,2020,13(4):047001. [125] YANG H,ZHAO H,YIN J,et al. Hybrid meta-structure for broadband waterborne sound absorption[J]. AIP Advances,2019,9:125226. [126] LEE Y,WANG P,CHEN T,et al. A mechanically pattern reconfigurable array[J]. Microwave and Optical Technology Letters,2020,62(3):1386-1390. [127] WEI K,PENG Y,WANG K,et al. Three dimensional lightweight lattice structures with large positive,zero and negative thermal expansion[J]. Composite Structures,2018,188:287-296. |
[1] | 杨贞, 梁庆宣, 段玉冰, 刘攀, 王昕, 李涤尘. 多层级异质异构吸波超材料功能化设计及熔融沉积3D打印[J]. 机械工程学报, 2024, 60(3): 319-327. |
[2] | 杨富富, 林维炜, 杨飞雨, 张俊, 姚立纲. 基于二重对称剪纸的新型超材料胞元结构的设计与特性分析[J]. 机械工程学报, 2023, 59(17): 97-108. |
[3] | 王帅星, 肖勇, 汤晏宁, 吴健, 滕万秀, 温激鸿. 轻质超材料板结构的隔声机理及调控规律[J]. 机械工程学报, 2023, 59(15): 94-109. |
[4] | 宋毅帆, 杨楠. 由折痕构建的扭转-吸能结构的形变与力学行为研究[J]. 机械工程学报, 2022, 58(17): 125-134. |
[5] | 张霄, 李明, 崔琦峰, 陈学松, 马家耀, 陈焱. 基于正六边形折纸的单自由度可展结构[J]. 机械工程学报, 2021, 57(11): 153-164. |
[6] | 冯慧娟, 马家耀, 陈焱. 广义Waterbomb折纸管的刚性折叠运动特性[J]. 机械工程学报, 2020, 56(19): 143-159. |
[7] | 郭建勇, 梁庆宣, 江子杰, 周文卿, 陈天宁, 李涤尘. 一种熔融沉积3D打印的高性能超材料吸波结构[J]. 机械工程学报, 2019, 55(23): 226-232. |
[8] | 刘敏, 张斌珍, 段俊萍. 一种基于超材料的宽频带定向性微带天线[J]. 机械工程学报, 2018, 54(9): 64-68. |
[9] | 于靖军, 谢岩, 裴旭. 负泊松比超材料研究进展[J]. 机械工程学报, 2018, 54(13): 1-14. |
[10] | 张博宇, 陈章华. 基于应变梯度理论和面积坐标有限元的管线钢微观组织尺寸效应研究[J]. 机械工程学报, 2017, 53(2): 74-83. |
[11] | 郑彤, 章定国, 洪嘉振. 三维大变形梁系统的动力学建模与仿真*[J]. 机械工程学报, 2016, 52(19): 81-87. |
[12] | 夏百战, 覃缘, 于德介, 陈宁. 区间模型下声学超材料的可靠性优化*[J]. 机械工程学报, 2016, 52(13): 94-102. |
[13] | 吴九汇, 马富银, 张思文, 沈礼. 声学超材料在低频减振降噪中的应用评述*[J]. 机械工程学报, 2016, 52(13): 68-78. |
[14] | 易兵 刘振宇 谭建荣. 基于高斯映射的CAD网格法向聚类分割方法[J]. 机械工程学报, 2015, 51(7): 115-123. |
[15] | 游斌弟, 郑天骄, 陈军, 杨斌久, 赵阳. 拖拽下大变形柔性线缆力学特性分析与测试[J]. 机械工程学报, 2015, 51(23): 36-45. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||