[1] ZHONG Y,ZHOU C,CHEN S,et al. Effects of temperature and pressure on stress corrosion cracking behavior of 310S stainless steel in chloride solution[J]. Chinese Journal of Mechanical Engineering,2017,30(1):200-206. [2] ZHENG T,HAN J T. High temperature oxidation behavior of SUS310S Austenitic stainless steel[J]. Advanced Materials Research,2014,941-944:212-215. [3] TOSAPOLPORN P. Characterization of welded Austenitic stainless steel precipitation during elevated temperature[J]. Applied Mechanics and Materials,2013,446-447:288-290. [4] LAWLER S,CLARK D,PUNSHON C,et al. Local vacuum electron beam welding for pressure vessel applications[J]. Ironmaking& Steelmaking,2015,42(10):722-726. [5] QI Yunlian,DENG Ju,HONG Quan,et al. Electron beam welding,laser beam welding and gas tungsten arc welding of titanium sheet[J]. Materials Science& Engineering A (Structural Materials:Properties,Microstructure and Processing),2000,280(1):177-181. [6] WĘGLOWSKI M S,BŁACHA S,PHILLIPS A. Electron beam welding-techniques and trends-review[J]. Vacuum,2016,130:72-92. [7] CHATTOPADHYAY R. Advanced thermally assisted surface engineering processes[M]. Berlin:Springer Netherlands,2004. [8] MASUDA H. Mechanism of SCC on SUS 310S stainless steel[J]. Open Corrosion Journal,2008,1:6-11. [9] FUKUMURA T,TERACHI T,ARIOKA K. Influence of temperature and water chemistry on IGSCC susceptibility of SUS316 in high-temperature water[J]. INSS Journal,2004,11:143-152. [10] SANO Y,OBATA M,YAMAMOTO T. Residual stress improvement of weldment by laser peening[J]. Welding International,2006,20(8):598-601. [11] ZHANG C,LI S,SUN J,et al. Controlling angular distortion in high strength low alloy steel thick-plate T-joints[J]. Journal of Materials Processing Technology,2019,267:257-267. [12] UEDA Y,YAMAKAWA T. Analysis of thermal elastic-plastic stress and strain during welding by finite element method[J]. Japan Welding Society Transactions,1971,2(2):186-196. [13] ELMER J W,GIEDT W H,EAGAR T W. The transition from shallow to deep penetration during electron beam welding[J]. Welding Journal,1990,69(5):167-175. [14] HEMMER H,GRONGØ. Prediction of penetration depths during electron beam welding[J]. Science and Technology of Welding and Joining,1999,4(4):219-225. [15] LACKI P,ADAMUS K. Numerical simulation of the electron beam welding process[J]. Computers& Structures,2011,89(11-12):977-985. [16] LIU C,WU B,ZHANG J X. Numerical investigation of residual stress in thick titanium alloy plate joined with electron beam welding[J]. Metallurgical and Materials Transactions B,2010,41(5):1129-1138. [17] LI Y,WU A,QUAN L I,et al. Effects of welding parameters on weld shape and residual stresses in electron beam welded Ti2AlNb alloy joints[J]. Transactions of Nonferrous Metals Society of China,2019,29(1):67-76. [18] LIANG L,HU R,WANG J,et al. A CFD-FEM model of residual stress for electron beam welding including the weld imperfection effect[J]. Metallurgical and Materials Transactions A,2019,50(5):2246-2258. [19] LI S,REN S,ZHANG Y,et al. Numerical investigation of formation mechanism of welding residual stress in P92 steel multi-pass joints[J]. Journal of Materials Processing Technology,2017,244:240-252. [20] ABAQUS. Abaqus Analysis user's Guide (V6.14).[EB/OL](2018-02-16). http://abaqus.software.polimi.it/v6.14/usb/default.htm. [21] WEI Y H,DONG Z B,LIU R P,et al. Three-dimensional numerical simulation of weld solidification cracking[J]. Modelling and Simulation in Materials Science and Engineering,2005,13(3):437-454. [22] 刘仁培,董祖珏,魏艳红.不锈钢焊接凝固裂纹应力应变场数值模拟模型的建立[J].焊接学报,1999,20(4):243-249. LIU Renpei,DONG Zujue,WEI Yanhong. Numerical simulation model of stress-strain distributions for weld metal solidification cracking in stainless steel[J]. Transactions-China Welding Institution,1999,20(4):243-249. [23] RAI R,BURGARDT P,MILEWSKI J O,et al. Heat transfer and fluid flow during electron beam welding of 21Cr-6Ni-9Mn steel and Ti-6Al-4V alloy[J]. Journal of Physics D:Applied Physics,2008,42(2):025503. [24] LINDGREN L E. Numerical modelling of welding[J]. Computer Methods in Applied Mechanics and Engineering,2006,195(48-49):6710-6736. [25] 邓德安,KIYOSHIMA S.退火温度对SUS304不锈钢焊接残余应力计算精度的影响[J].金属学报,2014,50(5):626-632. DENG Dean,KIYOSHIMA S. Influence of annealing temperature on calculation accuracy of welding residual stress in a SUS304 stainless steel joint[J]. Acta Metall Sinuxa,2014,50(5):626-632. [26] DENG D,ZHANG C,PU X,et al. Influence of material model on prediction accuracy of welding residual stress in an austenitic stainless steel multi-pass butt-welded joint[J]. Journal of Materials Engineering and Performance,2017,26(4):1494-1505. |