[1] COOMBS S. Smart skins:Information processing by lateral line flow sensors[J]. Autonomous Robots,2001,11(3):255-261. [2] COOMBS S,PETER G,HEINRICH M. The mecha-nosensory lateral line[M]. New York:Springer,1989. [3] BECKMANN M,EROS T,SCHMITZ A,et al. Number and distribution of superficial neuromasts in twelve common European cypriniform fishes and their relation-ship to habitat occurrence[J]. International Review of Hydrobiology,2013,95:273-284. [4] NETTEN S M V. Hydrodynamic detection by cupulae in a lateral line canal:Functional relations between physics and physiology[J]. Biological Cybernetics,2006,94:67-85. [5] KOTTAPALLI A G P,ASADNIA M,MIAO J M,et al. Touch at a distance sensing:Lateral-line inspired MEMS flow sensors[J]. Bioinspiration & Biomimetics,2014,9(4):14. [6] ABDULSADDA A T,TAN X B. Nonlinear estima-tion-based dipole source localization for artificial lateral line systems[J]. Bioinspiration & Biomimetics,2013,8(2):15. [7] ABDULSADDA A T,TAN X B. Artificial lateral line-based localization of a dipole source with unknown vibration amplitude and direction[C]//IEEE 15th Inte-rnational Conference on Advanced Robotics:New Boun-daries for Robotics,2011,447-452. [8] DAGAMSEH A,WIEGERINK R,LAMMERINK T,et al. Imaging dipole flow sources using an artificial lateral-line system made of biomimetic hair flow sens-ors[J]. Journal of the Royal Society Interface,2013,10(83):9. [9] 刘贵杰,宫华耀,吴乃龙,等. 基于鱼类侧线感知机理的流场辨识方法及仿真研究[J]. 机械工程学报,2016,52(17):162-167. LIU Guijie,GONG Huayao,WU Nailong,et al. Simulation research in water condition recognition method based on fish lateral line sensing mechanism[J]. Journal of Mechanical Engineering,2016,52(17):162-167. [10] 吴乃龙,吴超,葛彤,等. 基于鱼类体线感知机理的水下机器人水流场识别研究[J]. 机械工程学报,2016,52(13):54-59. WU Nailong,WU Chao,GE Tong,et al. Flow recognition of underwater vehicle based on the perception mechanism of lateral line[J]. Journal of Mechanical Engineering,2016,52(13):54-59. [11] ZHENG X,WANG C,FAN R,et al. Artificial lateral line based local sensing between two adjacent robotic fish[J]. Bioinspiration & Biomimetics,2017,13(1):016002. [12] PERERA T B D. Fish can encode order in their spatial map[J]. Proceedings of the Royal Society of London. Series B:Biological Sciences,2004,271(1553):2131-2134. [13] MONTGOMERY J C,Macdonald J A. Sensory tuning of lateral line receptors in antarctic fish to the movements of planktonic prey[J]. Science,1987,235(4785):195-196. [14] SCHWALBE M A,BASSETT D K,WEBB J F. Feeding in the dark:Lateral-line-mediated prey detection in the peacock cichlid Aulonocara stuartgranti[J]. Journal of Experimental Biology,2012,215(12):2060-2071. [15] BAKER C F,MONTGOMERY J C. The lateral line can mediate rheotaxis in fish[J]. Nature,1997,389(6654):960-963. [16] STOKES G G. On the effect of the internal friction of fluids on the motion of pendulums[J]. Transactions of the Cambridge Philosophical Society,1851,9:8. [17] GANLEY T,HUNG D L S,ZHU G,et al. Modeling and inverse compensation of temperature-dependent ionic polymer-metal composite sensor dynamics[J]. IEEE/ASME Transactions on Mechatronics,2011,16:80-89. [18] ABDULSADDA A T,TAN X B. An artificial lateral line system using IPMC sensor arrays[J]. International Jou-rnal of Smart & Nano Materials,2012,3:226-242. [19] ZHENG X D,ZHANG Y,JI M J,et al. Underwater positioning based on an artificial lateral line and a generalized regression neural network[J]. Journal of Bionic Engineering,2018,15:883-893. [20] JI M J,ZHANG Y,ZHENG X D,et al. A fish-shaped minimal prototype of lateral line system based on pressure sensing[C]//IEEE International Conference on Mechatr-onics & Automation,Takamatsu,Japan,2017,596-601. [21] JI M,ZHANG Y,ZHENG X,et al. Resolution impro-vement of dipole source localization for artificial lateral lines based on multiple signal classification[J]. Bioinspiration & Biomimetics,2019,14(1):016016. [22] SRIVASTAVA N,HINTON G,KRIZHEVSKY A,et al. Dropout:A simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research,2014,15(1):1929-1958. [23] HINTON G E,OSINDERO S,TEH Y W. A fast learning algorithm for deep belief nets[M]. Massachusetts:MIT Press,2006. [24] KRIZHEVSKY A,SUTSKEVER I,HINTON G E. ImageNet classification with deep convolutional neural networks[C]//International Conference on Neural Infor-mation Processing Systems. Curran Associates Inc. 2012:1097-1105. [25] ZEILER M D,FERGUS R. Visualizing and underst-anding convolutional networks[C]//European Conference on Computer Vision. Springer,Cham,2014:818-833. |