• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2020, Vol. 56 ›› Issue (10): 163-171.doi: 10.3901/JME.2020.10.163

• 运载工程 • 上一篇    下一篇

扫码分享

高速列车转向架构架载荷特征及疲劳损伤评估

张亚禹1, 孙守光1, 杨广雪1, 李广全2   

  1. 1. 北京交通大学机械与电子控制工程学院 北京 100044;
    2. 中车青岛四方机车车辆股份有限公司 青岛 266111
  • 收稿日期:2019-05-16 修回日期:2019-10-21 出版日期:2020-05-20 发布日期:2020-06-11
  • 通讯作者: 张亚禹(通信作者),男,1990年出生,博士研究生。主要研究方向为结构可靠性。E-mail:14116343@bjtu.edu.cn
  • 基金资助:
    国家重点研发计划课题资助项目(2018YFB1201704-04)。

Load Characteristics and Fatigue Damage Assessment of High Speed Train Bogie Frame

ZHANG Yayu1, SUN Shouguang1, YANG Guangxue1, LI Guangquan2   

  1. 1. School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044;
    2. CRRC QINGDAO SIFANG Co., Ltd., Qingdao 266111
  • Received:2019-05-16 Revised:2019-10-21 Online:2020-05-20 Published:2020-06-11

摘要: 利用载荷标定方法制作轴箱弹簧力传感器和一系减振器力传感器,线路测试得到动车转向架构架的垂向载荷时间历程。结合车载GPS信号和陀螺仪信号,分析列车起动加速、高低速直线运行、线路曲线通过、电机扭矩波动、制动停车等典型工况下构架载荷的变化特征。采用有限元仿真分析的方法确定构架端部的疲劳危险区域及载荷与应力的传递关系,进而编制构架在轴箱弹簧载荷、一系减振器载荷和耦合载荷作用时的应力幅值谱,最后依据疲劳损伤线性累计准则计算得到构架的疲劳损伤分布。研究结果表明,与构架非动力侧相比,构架动力侧轴箱弹簧载荷受电机输出扭矩的影响较大,尤其在列车起动、制动、电机扭矩波动等工况载荷变化明显。在轴箱弹簧载荷和一系减振器载荷单独作用时,构架端部的应力较大位置分布基本一致,最大载荷-应力传递系数为6.56 MPa/kN。在耦合载荷作用下,构架端部各测点处的疲劳损伤值均高于轴箱弹簧载荷、一系减振器载荷的单独作用。列车由速度200 km/h增大至350 km/h时,构架一位侧疲劳危险点的累计损伤值由0.078增大至0.435,增大了约4.6倍。在同一速度级下,一系减振器载荷产生的疲劳损伤影响参数大于轴箱弹簧载荷。研究结果可为焊接构架的优化设计及仿真分析提供一定理论参考。

关键词: 转向架构架, 轴箱弹簧, 一系减振器, 载荷特征, 疲劳损伤

Abstract: The axle box spring force sensor and primary shock absorber force sensor are made by using load calibration method. The vertical load time history of the motor vehicle frame is obtained by line test. Combined with vehicle-borne GPS signal and gyroscope signal, the changing characteristics of frame load under typical working conditions such as train starting acceleration, high and low speed linear running, line curve passing, motor torque fluctuation, braking and parking are analyzed. The fatigue hazard zone at the end of the frame and the relationship between load and stress are determined by finite element simulation analysis. Then the stress amplitude spectrum of the frame under axle box spring load, primary shock absorber load and coupling load is compiled. Finally, the fatigue damage distribution of the frame is calculated according to the linear cumulative criterion of fatigue damage. The results show that compared with the non-powered side of the frame, the axle box spring load of the powered side of the frame is greatly affected by the output torque of the motor, especially in the conditions of train starting, braking and motor torque fluctuation. Under the single action of axle box spring load and primary shock absorber load, the stress distribution at the end of the frame is basically the same, and the maximum load-stress transfer coefficient is 6.56 MPa/kN. Under the coupling load, the fatigue damage value at each measuring point of the frame is higher than that under the single action of axle box spring load and primary shock absorber load. When the train speed increases from 200 km/h to 350 km/h, the cumulative damage value at first side of the frame increases from 0.078 to 0.435, which increases about 4.6 times. At the same speed level, the fatigue damage parameters of the primary shock absorber load are larger than that of the axle box spring load. The research results can provide some theoretical reference for the optimization design and simulation analysis of welded frame.

Key words: bogie frame, axle box spring, primary shock absorber, load characteristics, fatigue damage

中图分类号: