机械工程学报 ›› 2020, Vol. 56 ›› Issue (10): 127-143.doi: 10.3901/JME.2020.10.127
熊璐1,2, 杨兴1,2, 卓桂荣1,2, 冷搏1,2, 章仁夑1,2
收稿日期:
2019-04-27
修回日期:
2019-10-12
出版日期:
2020-05-20
发布日期:
2020-06-11
通讯作者:
卓桂荣(通信作者),女,1968年出生,博士,副教授。主要研究方向为车辆系统动力学与控制。E-mail:zhuoguirong@tongji.edu.cn
作者简介:
熊璐,男,1978年出生,博士,教授,博士研究生导师。主要研究方向为车辆系统动力学与控制。E-mail:xiong_lu@tongji.edu.cn;杨兴,男,1995年出生,博士研究生。主要研究方向为车辆系统动力学与控制。E-mail:yang_xing@tongji.edu.cn;冷搏,男,1991年出生,博士研究生。主要研究方向为车辆系统动力学与控制。E-mail:harrisonleng@gmail.com;章仁夑,男,1989年出生,博士研究生。主要研究方向为车辆系统动力学与控制。E-mail:zhangrenxie@126.com
基金资助:
XIONG Lu1,2, YANG Xing1,2, ZHUO Guirong1,2, LENG Bo1,2, ZHANG Renxie1,2
Received:
2019-04-27
Revised:
2019-10-12
Online:
2020-05-20
Published:
2020-06-11
摘要: 回顾无人驾驶车辆的运动控制问题。从系统模型、控制方法以及控制结构等角度切入,分别在纵向运动控制、路径跟踪控制和轨迹跟踪控制三个层面对国内外的研究进展进行综述,并提出对无人驾驶车辆运动控制技术的发展展望。当前运动控制研究多集中于常规工况,为实现无人驾驶车辆在处理人类驾驶员认为具有挑战性或缺乏操纵能力的复杂动态场景下的潜力,运动控制研究须从常规工况向极限工况拓展,但是极限工况下车辆的非线性和多维运动耦合特征显著增强,对系统建模以及算法的自适应性和鲁棒性的要求进一步提高。同时,为应对复杂场景下的多目标协调优化问题,考虑环境不确定性的运动规划与控制集成设计需要深入研究。增加执行器手段可以提升极限工况下车辆的侧向响应速度和控制裕度,但是冗余异构执行器的控制分配研究仍有待突破。运动控制的实现依赖于路面附着系数、质心侧偏角等信息输入,因此基于多源传感信息融合的关键状态与参数估计问题亟需解决。此外,将机器学习应用到车辆运动控制领域也是一个重要的发展方向。
中图分类号:
熊璐, 杨兴, 卓桂荣, 冷搏, 章仁夑. 无人驾驶车辆的运动控制发展现状综述[J]. 机械工程学报, 2020, 56(10): 127-143.
XIONG Lu, YANG Xing, ZHUO Guirong, LENG Bo, ZHANG Renxie. Review on Motion Control of Autonomous Vehicles[J]. Journal of Mechanical Engineering, 2020, 56(10): 127-143.
[1] PADEN B,CAP M,YONG S Z,et al. A survey of motion planning and control techniques for self-driving urban vehicles[J]. IEEE Transactions on Intelligent Vehicles,2016,1(1):33-55. [2] 姜岩,陈慧岩,熊光明,等. 无人驾驶汽车概论[M]. 北京:北京理工大学出版社,2014. JIANG Yan,CHEN Huiyan,XIONG Guangming,et al. Introduction to self-driving vehicles[M]. Beijing:Beijing Institute of Technology Press,2014. [3] CHEN C,SEFF A,KORNHAUSER A,et al. Deep driving:Learning affordance for direct perception in autonomous driving[C]//IEEE International Conference on Computer Vision. Santiago:IEEE,2015:2722-2730. [4] BOJARSKI M,DEL TESTA D,DWORAKOWSKI D,et al. End to end learning for self-driving cars[J]. Arxiv,2016:1604.07316. [5] BUEHLER M,IAGNEMMA K,SINGH S. The DARPA urban challenge:Autonomous vehicles in city traffic[M]. Berlin:Springer,2009. [6] 郭景华,李克强,罗禹贡. 智能车辆运动控制研究综述[J]. 汽车安全与节能学报,2016(2):151-159. GUO Jinghua,LI Keqiang,LUO Yugong. Review on the research of motion control for intelligent vehicles[J]. Journal of Automotive Safety and Energy,2016(2):151-159. [7] AMER N H,ZAMZURI H,HUDHA K,et al. Modelling and control strategies in path tracking control for autonomous ground vehicles:A review of state of the art and challenges[J]. Journal of Intelligent & Robotic Systems,2017,86(2):225-254. [8] 余卓平,章仁夑,熊璐,等. 考虑线控转向非线性和不确定性的转向角控制[J]. 同济大学学报,2017,45(1):79-86. YU Zhuoping,ZHANG Renxie,XIONG Lu,et al. Steering angle control of steer-by-wire systems considering nonlinear characteristic and uncertainty parameters[J]. Journal of Tongji University,2017,45(1):79-86. [9] KIM W,SON Y S,CHUNG C C. Torque-overlay-based robust steering wheel angle control of electrical power steering for a lane-keeping system of automated vehicles[J]. IEEE Transactions on Vehicular Technology,2016,65(6):4379-4392. [10] 余卓平,韩伟,徐松云,等. 电子液压制动系统液压力控制发展现状综述[J]. 机械工程学报,2017(14):1-15. YU Zhuoping,HAN Wei,XU Songyun. Review on hydraulic pressure control of electro-hydraulic brake system[J]. Journal of Mechanical Engineering,2017(14):1-15. [11] THRUN S,MONTEMERLO M,DAHLKAMP H,et al. Stanley:The robot that won the DARPA grand challenge[J]. Journal of Field Robotics,2006,23(9):661-692. [12] 陈刚,张为公. 基于模糊自适应PID的汽车驾驶机器人的车速控制[J]. 汽车工程,2012,34(6):511-516. CHEN Gang,ZHANG Weigong. Speed control of vehicle robot driver based on adaptive fuzzy PID control[J]. Automotive Engineering,2012,34(6):511-516. [13] CHOI S,D'ANDRÉANOVEL B,FLIESS M,et al. Model-free control of automotive engine and brake for stop-and-go scenarios[C]//Proceedings of the European Control Conference. Budapest:IEEE,2009:3622-3627. [14] SHAKOURI P,ORDYS A,LAILA D S,et al. Adaptive cruise control system:Comparing gain-scheduling PI and LQ controllers[J]. IFAC Proceedings Volumes,2011,44(1):12964-12969. [15] XU S,PENG H,SONG Z,et al. Accurate and smooth speed control for an autonomous vehicle[C]//IEEE Intelligent Vehicles Symposium (IV). Changshu:IEEE,2018:1976-1982. [16] GERDES J C,HEDRICK J K. Vehicle speed and spacing control via coordinated throttle and brake actuation[J]. Control Engineering Practice,1997,5(11):1607-1614. [17] FERRARA A,VECCHIO C. Second order sliding mode control of vehicles with distributed collision avoidance capabilities[J]. Mechatronics,2009,19(4):471-477. [18] HANG P,CHEN X,ZHANG B,et al. Longitudinal velocity tracking control of a 4WID electric vehicle[J]. IFAC-PapersOnLine,2018,51(31):790-795. [19] 陈刚,吴俊. 无人驾驶机器人车辆非线性模糊滑模车速控制[J]. 中国公路学报,2019,32(6):114-123. CHEN Gang,WU Jun. Nonlinear fuzzy sliding mode speed control for unmanned driving robotic vehicle[J]. China Journal of Highway and Transport,2019,32(6):114-123. [20] ZHU M,CHEN H,XIONG G. A model predictive speed tracking control approach for autonomous ground vehicles[J]. Mechanical Systems and Signal Processing,2017,87:138-152. [21] 朱大吉. 基于状态观测的纯电动汽车纵向车速控制[D].长春:吉林大学,2017. ZHU Daji. Longitudinal speed control for electric vehicles based on state observation[D]. Changchun:Jilin University,2017. [22] NARANJO J E,GONZALEZ C,GARCIA R,et al. ACC+stop&go maneuvers with throttle and brake fuzzy control[J]. IEEE Transactions on Intelligent Transportation Systems,2006,7(2):213-225. [23] NARANJO J E,GONZALEZ C,GARCIA R,et al. Cooperative throttle and brake fuzzy control for ACC+ stop&go maneuvers[J]. IEEE Transactions on Vehicular Technology,2007,56(4):1623-1630. [24] WANG J,SUN Z,XU X,et al. Adaptive speed tracking control for autonomous land vehicles in all-terrain navigation:An experimental study[J]. Journal of Field Robotics,2013,30(1):102-128. [25] 刘柏楠. 道路坡度及车辆质量自适应的自主驾驶车辆纵向速度控制研究[D]. 长春:吉林大学,2015. LIU Bainan. Research on longitudinal speed control for autonomous vehicles adaptive with road grade and vehicle mass[D]. Changchun:Jilin University,2015. [26] CHEN Y,WANG J. Adaptive vehicle speed control with input injections for longitudinal motion independent road frictional condition estimation[J]. IEEE Transactions on Vehicular Technology,2011,60(3):839-848. [27] 熊璐,付志强,柏满飞,等. 一种考虑加速度需求的车速自适应控制方法[J]. 西安交通大学学报,2019(1):1-8. XIONG Lu,FU Zhiqiang,BAI Manfei,et al. A vehicle speed adaptive control method considering acceleration demand[J]. Journal of Xi'an Jiaotong University,2019(1):1-8. [28] KIM H,KIM D,SHU I,et al. Time-varying parameter adaptive vehicle speed control[J]. IEEE Transactions on Vehicular Technology,2016,65(2):581-588. [29] YAMAKADO M,TAKAHASHI J,SAITO S,et al. Improvement in vehicle agility and stability by g-vectoring control[J]. Vehicle System Dynamics,2010,48(suppl1):231-254. [30] YAMAKADO M,NAGATSUKA K,TAKAHASHI J. A yaw-moment control method based on a vehicle's lateral jerk information[J]. Vehicle System Dynamics,2014,52(10):1233-1253. [31] COULTER R C. Implementation of the pure pursuit path tracking algorithm[R]. Pittsburgh:Carnegie Mellon University Pittsburgh PA Robotics Institute,CMU-RI-TR-92-01,1992. [32] SNIDER J M. Automatic steering methods for autonomous automobile path tracking[R]. Pittsburgh:Carnegie Mellon University Pittsburgh PA Robotics Institute,CMURI-TR-09-08,2009. [33] 吕文杰,马戎,李岁劳,等. 基于纯追踪模型的路径跟踪改进算法[J]. 测控技术,2011(30):93-96. LÜ Wenjie,MA Rong,LI Suilao,et al. An improved algorithm based on pure pursuit model for path tracking[J]. Measurement & Control Technology,2011(30):93-96. [34] HOFFMANN G M,TOMLIN C J,MONTEMERLO M,et al. Autonomous automobile trajectory tracking for off-road driving:Controller design,experimental validation and racing[C]//American Control Conference. New York:IEEE,2007:2296-2301. [35] DE LUCA A,ORIOLO G,SAMSON C. Feedback control of a nonholonomic car-like robot[M]. Berlin:Springer,1998. [36] PLASKONKA J. The path following control of a unicycle based on the chained form of a kinematic model derived with respect to the Serret-Frenet frame[C]//International Conference on Methods & Models in Automation & Robotics. Miedzyzdroje:IEEE,2012:617-620. [37] RAJAMANI R,ZHU C,ALEXANDER L. Lateral control of a backward driven front-steering vehicle[J]. Control Engineering Practice,2003,11(5):531-540. [38] RAFFO G V,GOMES G K,NORMEY-RICO J E,et al. A predictive controller for autonomous vehicle path tracking[J]. IEEE Transactions on Intelligent Transportation Systems,2009,10(1):92-102. [39] LIU J,JAYAKUMAR P,STEIN J L,et al. A study on model fidelity for model predictive control-based obstacle avoidance in high-speed autonomous ground vehicles[J]. Vehicle System Dynamics,2016,54(11):1629-1650. [40] HU C,WANG Z,TAGHAVIFAR H,et al. MME-EKF-Based path-tracking control of autonomous vehicles considering input saturation[J]. IEEE Transactions on Vehicular Technology,2019,68(6):5246-5259. [41] 赵熙俊,陈慧岩. 智能车辆路径跟踪横向控制方法的研究[J]. 汽车工程,2011(5):382-387. ZHAO Xijun,CHEN Huiyan. A study on lateral control method for the path tracking of intelligent vehicles[J]. Automotive Engineering,2011(5):382-387. [42] 赵盼. 城市环境下无人驾驶车辆运动控制方法的研究[D]. 合肥:中国科学技术大学,2012. ZHAO Pan. Research on motion control approaches of autonomous vehicle in urban environments[D]. Hefei:University of Science and Technology of China,2012. [43] MARINO R,SCALZI S,NETTO M. Nested PID steering control for lane keeping in autonomous vehicles[J]. Control Engineering Practice,2011,19(12):1459-1467. [44] XU S,PENG H. Design,analysis,and experiments of preview path tracking control for autonomous vehicles[J]. IEEE Transactions on Intelligent Transportation Systems,2020,21(1):48-58. [45] KRITAYAKIRANA K,GERDES J C. Using the centre of percussion to design a steering controller for an autonomous race car[J]. Vehicle System Dynamics,2012,501(SI):33-51. [46] KAPANIA N R,GERDES J C. Design of a feedback-feedforward steering controller for accurate path tracking and stability at the limits of handling[J]. Vehicle System Dynamics,2015,53(12):1687-1704. [47] GOODARZI A,SABOOTEH A,ESMAILZADEH E. Automatic path control based on integrated steering and external yaw-moment control[J]. Proceedings of the Institution of Mechanical Engineers,Part K:Journal of Multi-body Dynamics,2008,222(2):189-200. [48] CHATZIKOMIS C,SORNIOTTI A,GRUBER P,et al. Comparison of path tracking and torque-vectoring controllers for autonomous electric vehicles[J]. IEEE Transactions on Intelligent Vehicles,2018,3(4):559-570. [49] HU C,WANG R,YAN F,et al. Output constraint control on path following of four-wheel independently actuated autonomous ground vehicles[J]. IEEE Transactions on Vehicular Technology,2016,65(6):4033-4043. [50] GUO J,LUO Y,LI K. An adaptive hierarchical trajectory following control approach of autonomous four-wheel independent drive electric vehicles[J]. IEEE Transactions on Intelligent Transportation Systems,2018:1-11. [51] ZHANG H,WANG J. Active steering actuator fault detection for an automatically-steered electric ground vehicle[J]. IEEE Transactions on Vehicular Technology,2017,66(5):3685-3702. [52] YANG H,COCQUEMPOT V,JIANG B. Optimal fault-tolerant path-tracking control for 4WS4WD electric vehicles[J]. IEEE Transactions on Intelligent Transportation Systems,2010,11(1):237-243. [53] ACKERMANN J,GULDNER J,SIENEL W,et al. Linear and nonlinear controller design for robust automatic steering[J]. IEEE Transactions on Control Systems Technology,1995,3(1):132-143. [54] 余卓平,章仁燮,熊璐,等. 基于条件积分方法的无人差动转向车辆动力学控制[J]. 机械工程学报,2017(14):29-38. YU Zhuoping,ZHANG Renxie,XIONG Lu,et al. Dynamic control for unmanned skid-steering vehicle with conditional integrators[J]. Journal of Mechanical Engineering,2017(14):29-38. [55] TAGNE G,TALJ R,CHARARA A. Higher-order sliding mode control for lateral dynamics of autonomous vehicles,with experimental validation[C]//Intelligent Vehicles Symposium. Queensland:IEEE,2013:678-683. [56] JI X,HE X,LV C,et al. Adaptive-neural-network-based robust lateral motion control for autonomous vehicle at driving limits[J]. Control Engineering Practice,2018,76:41-53. [57] FALCONE P,BORRELLI F,ASGARI J,et al. Predictive active steering control for autonomous vehicle systems[J]. IEEE Transactions on Control Systems Technology,2007,15(3):566-580. [58] FALCONE P,BORRELLI F,TSENG H E,et al. Linear time-varying model predictive control and its application to active steering systems:Stability analysis and experimental validation[J]. International Journal of Robust and Nonlinear Control,2008,18(8):862-875. [59] FALCONE P,TSENG H E,BORRELLI F,et al. MPC-based yaw and lateral stabilisation via active front steering and braking[J]. Vehicle System Dynamics,2008,46(Suppl.):611-628. [60] 龚建伟,姜岩,徐威. 无人驾驶车辆模型预测控制[M]. 北京:北京理工大学出版社,2014. GONG Jianwei,JIANG Yan,XU Wei. Model predictive control for self-driving vehicles[M]. Beijing:Beijing Institute of Technilogy Press,2014. [61] GUO H,LIU J,CAO D,et al. Dual-envelop-oriented moving horizon path tracking control for fully automated vehicles[J]. Mechatronics,2017,50:422-433. [62] KIM E,KIM J,SUNWOO M. Model predictive control strategy for smooth path tracking of autonomous vehicles with steering actuator dynamics[J]. International Journal of Automotive Technology,2014,15(7):1155-1164. [63] NAM H,CHOI W,AHN C. Model predictive control for evasive steering of an autonomous vehicle[J]. International Journal of Automotive Technology,2019,20(5):1033-1042. [64] MAYNE D Q. Model predictive control:Recent developments and future promise[J]. Automatica,2014,50(12):2967-2986. [65] 宋彦,赵盼,陶翔,等. 基于μ综合的无人驾驶车辆路径跟随串级鲁棒控制方法[J]. 机器人,2013,35(4):417-424. SONG Yan,ZHAO Pan,TAO Xiang. UGV robust path following control under double loop structure with m synthesis[J]. Robot,2013,35(4):417-424. [66] WANG R,JING H,HU C,et al. Robust H∞ path following control for autonomous ground vehicles with delay and data dropout[J]. IEEE Transactions on Intelligent Transportation Systems,2016,17(7):2042-2050. [67] HAN J. From PID to active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics,2009,56(3):900-906. [68] CHU Z,SUN Y,WU C,et al. Active disturbance rejection control applied to automated steering for lane keeping in autonomous vehicles[J]. Control Engineering Practice,2018,74:13-21. [69] CHU Z,WU C,SEPEHRI N. Automated steering controller design for vehicle lane keeping combining linear active disturbance rejection control and quantitative feedback theory[J]. Proceedings of the Institution of Mechanical Engineers,Part I:Journal of Systems and Control Engineering,2018,232(7):937-948. [70] FLIESS M,LEVINE J,MARTIN P,et al. Flatness and defect of non-linear systems:Introductory theory and examples[J]. International Journal of Control,1995,61(6):1327-1361. [71] XIA Y,PU F,LI S,et al. Lateral path tracking control of autonomous land vehicle based on ADRC and differential flatness[J]. IEEE Transactions on Industrial Electronics,2016,63(5):3091-3099. [72] SILVA M,GARROTE L,MOITA F,et al. Autonomous electric vehicle:Steering and path-following control systems[C]//IEEE Mediterranean Electrotechnical Conference. Yasmine Hammamet:IEEE,2012:442-445. [73] GUO J,HU P,LI L,et al. Design of automatic steering controller for trajectory tracking of unmanned vehicles using genetic algorithms[J]. IEEE Transactions on Vehicular Technology,2012,61(7):2913-2924. [74] TAGNE G,TALJ R,CHARARA A. Design and validation of a robust immersion and invariance controller for the lateral dynamics of intelligent vehicles[J]. Control Engineering Practice,2015,40:81-92. [75] TAGNE G,TALJ R,CHARARA A. Design and comparison of robust nonlinear controllers for the lateral dynamics of intelligent vehicles[J]. IEEE Transactions on Intelligent Transportation Systems,2016,17(3):796-809. [76] WANG R,HU C,YAN F,et al. Composite nonlinear feedback control for path following of four-wheel independently actuated autonomous ground vehicles[J]. IEEE Transactions on Intelligent Transportation Systems,2016,17(7):2063-2074. [77] HU C,WANG R,YAN F. Integral sliding mode-based composite nonlinear feedback control for path following of four-wheel independently actuated autonomous vehicles[J]. IEEE Transactions on Transportation Electrification,2016,2(2):221-230. [78] LIM E H M,HEDRICK J K. Lateral and longitudinal vehicle control coupling for automated vehicle operation[C]//American Control Conference. San Diego,California:IEEE,1999:3676-3680. [79] 陈慧岩,陈舒平,龚建伟. 智能汽车横向控制方法研究综述[J]. 兵工学报,2017(6):1203-1214. CHEN Huiyan,CHEN Shuping,GONG Jianwei. A review on the research of lateral control for intelligent vehicles[J]. Acta Armamentarii,2017(6):1203-1214. [80] YU Z,WANG J. Automatic vehicle trajectory tracking control with self-calibration of nonlinear tire force function[C]//American Control Conference. Seattle:IEEE,2017:985-990. [81] TURRI V,CARVALHO A,TSENG H E,et al. Linear model predictive control for lane keeping and obstacle avoidance on low curvature roads[C]//International IEEE Conference on Intelligent Transportation Systems. Hague:IEEE,2013:378-383. [82] 明廷友. 智能汽车的轨迹跟随控制研究[D]. 长春:吉林大学,2016. MING Tingyou. Research on trajectory tracking control for intelligent vehicles[D]. Changchun:Jilin University,2016. [83] 章仁燮,熊璐,余卓平,等. 基于条件积分算法的无人驾驶车辆轨迹跟踪鲁棒控制方法[J]. 机械工程学报,2018(18):129-139. ZHANG Renxie,XIONG Lu,YU Zhuoping,et al. Robust trajectory tracking control of autonomous vehicles based on condition integration method[J]. Journal of Mechanical Engineering,2018(18):129-139. [84] YU Z,ZHANG R,XIONG L,et al. Robust hierarchical controller with conditional integrator based on small gain theorem for reference trajectory tracking of autonomous vehicles[J]. Vehicle System Dynamics,2018,57(8):1143-1162. [85] ATTIA R,ORJUELA R,BASSET M. Combined longitudinal and lateral control for automated vehicle guidance[J]. Vehicle System Dynamics,2014,52(2):261-279. [86] TALVALA K L R,KRITAYAKIRANA K,GERDES J C. Pushing the limits:From lanekeeping to autonomous racing[J]. Annual Reviews in Control,2011,35(1):137-148. [87] LAURENSE V A,GOH J Y,GERDES J C. Path-tracking for autonomous vehicles at the limit of friction[C]//American Control Conference. Seattle:IEEE,2017:5586-5591. [88] KRITAYAKIRANA. Autonomous vehicle control at the limits of handling[D]. San Francisco:Stanford University,2012. [89] GOH J Y. Automated vehicle control beyond the stability limits[D]. San Francisco:Stanford university,2019. [90] NI J,HU J. Dynamics control of autonomous vehicle at driving limits and experiment on an autonomous formula racing car[J]. Mechanical Systems and Signal Processing,2017,90:154-174. [91] NI J,HU J,XIANG C. Envelope control for four-wheel independently actuated autonomous ground vehicle through AFS/DYC integrated control[J]. IEEE Transactions on Vehicular Technology,2017,66(11):9712-9726. [92] BROWN M,FUNKE J,ERLIEN S,et al. Safe driving envelopes for path tracking in autonomous vehicles[J]. Control Engineering Practice,2017,61:307-316. [93] BEAL C E,GERDES J C. Model predictive control for vehicle stabilization at the limits of handling[J]. IEEE Transactions on Control Systems Technology,2013,21(4):1258-1269. [94] ERLIEN S M,FUJITA S,GERDES J C. Safe driving envelopes for shared control of ground vehicles[J]. IFAC Proceedings Volumes,2013,46(21):831-836. [95] FUNKE J,BROWN M,ERLIEN S M,et al. Collision avoidance and stabilization for autonomous vehicles in emergency scenarios[J]. IEEE Transactions on Control Systems Technology,2017,25(4):1204-1216. [96] GUO H,SHEN C,ZHANG H,et al. Simultaneous trajectory planning and tracking using an MPC method for cyber-physical systems:A case study of obstacle avoidance for an intelligent vehicle[J]. IEEE Transactions on Industrial Informatics,2018,14(9):4273-4283. [97] 刘凯,龚建伟,陈舒平,等. 高速无人驾驶车辆最优运动规划与控制的动力学建模分析[J]. 机械工程学报,2018(14):141-151. LIU Kai,GUO Jianwei,CHEN Shuping,et al. Dynamic modeling analysis of optimal motion planning and control for high-speed self-driving vehicles[J]. Journal of Mechanical Engineering,2018(14):141-151. [98] LIU J,JAYAKUMAR P,STEIN J L, et al. Combined speed and steering control in high-speed autonomous ground vehicles for obstacle avoidance using model predictive control[J]. IEEE Transactions on Vehicular Technology,2017,66(10):8746-8763. [99] KANAYAMA Y,KIMURA Y,MIYAZAKI F,et al. A stable tracking control method for an autonomous mobile robot[C]//IEEE International Conference on Robotics & Automation. Osaka:IEEE,1990:384-389. [100] JIANGDAGGER Z,NIJMEIJER H. Tracking control of mobile robots:A case study in backstepping[J]. Automatica,1997,33(7):1393-1399. [101] ALCALA E,PUIG V,QUEVEDO J,et al. Autonomous vehicle control using a kinematic Lyapunov-based technique with LQR-LMI tuning[J]. Control Engineering Practice,2018,73:1-12. [102] PHAM H A. Combined lateral and longitudinal control of vehicles for the automated highway system[D]. San Francisco:University of California,Berkeley,1996. [103] LEE H,TOMIZUKA M. Coordinated longitudinal and lateral motion control of vehicles for IVHS[J]. Journal of Dynamic Systems Measurement & Control,2001,123(3):535-543. [104] GUO J,LUO Y,LI K. Adaptive coordinated collision avoidance control of autonomous ground vehicles[J]. Proceedings of the Institution of Mechanical Engineers,Part I:Journal of Systems and Control Engineering,2018,232(9):1120-1133. [105] KUMARAWADU S,LEE T. Neuroadaptive output tracking of fully autonomous road vehicles with an observer[J]. IEEE Transactions on Intelligent Transportation Systems,2009,10(2):335-345. [106] PETERS S C,FRAZZOLI E,IAGNEMMA K. Differential flatness of a front-steered vehicle with tire force control[C]//International Conference on Intelligent Robots and Systems. San Francisco:IEEE,2011:298-304. [107] MENOUR L,D'ANDRÉA-NOVEL B,FLIESS M,et al. Coupled nonlinear vehicle control:Flatness-based setting with algebraic estimation techniques[J]. Control Engineering Practice,2014,22:135-146. [108] FERGANI S,MENHOUR L,SENAME O,et al. Integrated vehicle control through the coordination of longitudinal/lateral and vertical dynamics controllers:Flatness and LPV/H∞-based design[J]. International Journal of Robust and Nonlinear Control,2017,27(18):4992-5007. [109] GAO Y,LIN T,BORRELLI F,et al. Predictive control of autonomous ground vehicles with obstacle avoidance on slippery roads[C]//ASME 2010 Dynamic Systems and Control Conference. Cambridge:2010:265-272. [110] GAO Y. Model predictive control for autonomous and semiautonomous vehicles[D]. San Francisco:University of California,Berkeley,2014. [111] BROWN M,GERDES J C. Coordinating tire forces to avoid obstacles using nonlinear model predictive control[J]. IEEE Transactions on Intelligent Vehicles,2020,5(1):21-31. [112] GAO Y,GRAY A,TSENG H E,et al. A tube-based robust nonlinear predictive control approach to semiautonomous ground vehicles[J]. Vehicle System Dynamics,2014,52(6):802-823. [113] KABZAN J,HEWING L,LINIGER A,et al. Learning-based model predictive control for autonomous racing[J]. IEEE Robotics and Automation Letters,2019,4(4):3363-3370. [114] KAPANIA N R,GERDES J C. Path tracking of highly dynamic autonomous vehicle trajectories via iterative learning control[C]//American Control Conference. Chicago:IEEE,2015:2753-2758. [115] ROSOLIA U,CARVALHO A,BORRELLI F. Autonomous racing using learning model predictive control[C]//American Control Conference. New York:IEEE,2017:5115-5120. |
[1] | 杨泽坤, 李韶华, 王振峰. 基于自适应变参数MPC的分布式驱动智能车轨迹跟踪控制[J]. 机械工程学报, 2024, 60(6): 363-377. |
[2] | 张立元, 杨锦波, 李澳, 杨庆凯, 徐光魁. 张拉整体球形机器人构型设计与控制研究进展[J]. 机械工程学报, 2024, 60(5): 1-18. |
[3] | 汪首坤, 许永康, 陈志华, 司金戈, 李斌, 王军政. 无人机移动自主回收着陆原理及控制方法[J]. 机械工程学报, 2024, 60(3): 34-46. |
[4] | 张昊, 魏超, 胡纪滨, 陈泳丹. 基于转向模式切换的三轴独立转向车辆路径跟踪控制研究[J]. 机械工程学报, 2024, 60(2): 243-251. |
[5] | 陈正, 吕立彤, 王飞, 姚斌, 李冬明, 刘红光, 张国良. 基于容腔压力规划的非模式切换负载口独立电液系统运动控制[J]. 机械工程学报, 2024, 60(2): 302-312. |
[6] | 姚建均, 张宜坤, 柯运, 钱琛, 王超. 基于模型预测控制的机器人姿态控制策略研究[J]. 机械工程学报, 2024, 60(19): 88-100. |
[7] | 袁小庆, 吴涛, 原勋, 王文东. 基于GSO-RF意图识别算法的全身助力外骨骼控制方法研究[J]. 机械工程学报, 2024, 60(17): 91-101. |
[8] | 何华, 刘全, 申屠舒展, 宫昭. 轮式多机协同搬运机器人轨迹跟踪控制器设计[J]. 机械工程学报, 2024, 60(11): 145-155. |
[9] | 张奇祥, 王金湘, 张伊晗, 张荣林, 靳立强, 殷国栋. 智能电动汽车线控制动关键技术与研究进展[J]. 机械工程学报, 2024, 60(10): 339-365. |
[10] | 刘聪, 刘辉, 韩立金, 聂士达. 基于学习型滑模预测控制的无人驾驶车辆非结构化环境轨迹跟踪及稳定性控制[J]. 机械工程学报, 2024, 60(10): 399-412. |
[11] | 汪洪波, 周俊涛, 陈无畏, 郑文杰, 谢有浩. 基于转向/横摆纳什博弈的智能车辆路径跟踪协调控制[J]. 机械工程学报, 2024, 60(10): 439-452. |
[12] | 林棻, 郝明彪, 王天成, 王骁侠. 基于反步滑模法的无人驾驶车辆横向稳定性控制[J]. 机械工程学报, 2024, 60(10): 497-506. |
[13] | 李韶华, 杨泽坤, 王雪玮. 基于T-S模糊变权重MPC的智能车轨迹跟踪控制[J]. 机械工程学报, 2023, 59(4): 199-212. |
[14] | 黄维维, 张鑫泉, 朱利民. 基于重复控制的快速刀具伺服系统前馈补偿方法[J]. 机械工程学报, 2023, 59(21): 43-51. |
[15] | 高镇海, 于桐, 孙天骏, 唐明弘, 高菲, 赵睿. 面向纵向自动驾驶的仿人驱动控制网络模型[J]. 机械工程学报, 2023, 59(18): 251-262. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||