[1] DENG Y P,WU Z G,LIANG R,et al. Layer-based heterostructured cathodes for lithium-ion and sodium-ion batteries[J]. Advanced Functional Materials,2019,29(19):1808522. [2] SHAN X Y,GUO Z X,ZHANG X,et al. Mesoporous TiO2 nanofiber as highly efficient sulfur host for advanced Lithium-sulfur batteries[J]. Chin. J. Mech. Eng.,2019,32:60-65. [3] LI Y,LU Y,ZHAO C,et al. Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage[J]. Energy Storage Materials,2017,7:130-151. [4] XIANG X,ZANG K,CHEN J. Recent advances and prospects of cathode materials for sodium-ion batteries[J]. Adv. Mater.,2015,27(36):5343-5364. [5] HAN M H,GONZALO E,SINGH G,et al. A comprehensive review of sodium layered oxides:Powerful cathodes for Na-ion batteries[J]. Energy & Environmental Science,2015,8(1):81-102. [6] KIM H,KIM H,DING Z,et al. Recent progress in electrode materials for sodium-ion batteries[J]. Advanced Energy Materials,2016,6(19):1600943. [7] SHAN X Y,GUO Z X,ZHANG X,et al. Mesoporous TiO2 nanofber as highly efficient sulfur host for advanced lithium-sulfur batteries[J]. Chin. J. Mech. Eng.,2019,32:60-66. [8] 赵新兵,谢健. 新型锂离子电池正极材料LiFePO4的研究进展[J]. 机械工程学报,2007,43(1):69-76. ZHAO Xinbing,XIE Jian. Recent development of LiFePO4 cathode materials for lithium-ion batteries[J]. Journal of Mechanical Engineering,2007,43(1):69-76. [9] HARIHARAN K. Physicochemical properties of NaxCoO2 as a cathode for solid state sodium battery[J]. Solid State Ionics,2011,192(1):360-363. [10] BIANCHINI M,WANG J,CLEMENT R,et al. A first-principles and experimental investigation of nickel solubility into the P2 NaxCoO2 sodium-ion cathode[J]. Advanced Energy Materials,2018,8(26):1801446. [11] MA X,CHEN H,CEDER G. Electrochemical properties of monoclinic NaMnO2[J]. Journal of The Electroche-mical Society,2011,158(12):A1307-A1312. [12] CABLLERO A,HERNAN L,MORALES J,et al. Synthesis and characterization of high-temperature hexagonal P2-Na0.6MnO2 and its electrochemical behaviour as cathode in sodium cells[J]. Journal of Materials Chemistry,2002,12(4):1142-1147. [13] KOMABA S,TAKEI C,NAKAYAMA T,et al. Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2[J]. Electrochemistry Communications,2010,12(3):355-358. [14] HAMANI D,ATI M,TARASCON J-M,et al. NaxVO2 as possible electrode for Na-ion batteries[J]. Electro-chemistry Communications,2011,13(9):938-941. [15] LU Z,DAHN J R. In situ x-ray diffraction study of P2-Na2/3N1/3Mn2/3O2[J]. Journal of the Electrochemical Society,2001,148(11):A1225-A1229. [16] KIM D,LEE E,SLATER M,et al. Layered Na[Ni1/3Fe1/3Mn1/3]O2 cathodes for Na-ion battery applica-tion[J]. Electrochemistry Communications,2012,18:66-69. [17] KOMABA S,YABUUCHI N,NAKAYAMA T,et al. Study on the reversible electrode reaction of Na1-xNi0.5Mn0.5O2 for a rechargeable sodium-ion battery[J]. Inorg. Chem.,2012,51(11):6211-6220. [18] SATHIYA M,HEMALATHA K,RAMESHA K,et al. Synthesis,structure,and electrochemical properties of the layered sodium insertion cathode material:NaNi1/3Mn1/3Co1/3O2[J]. Chemistry of Materials,2012,24(10):1846-1853. [19] YABUUCHI N,KAJIYAMA M,IWATATE J,et al. P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries[J]. Nature Materials,2012,11(6):512-517. [20] WANG J,QIU B,HE X,et al. Low-cost orthorhombic Nax[FeTi]O4 (x=1 and 4/3) compounds as anodematerials for sodium-ion batteries[J]. Chemistry of Materials,2015,27(12):4374-4379. [21] WANG Y,ZHAO F,QIAN Y,et al. High-performance P2-Na0.70Mn0.80Co0.15Zr0.05O2 cathode for sodium-ion batteries[J]. ACS Applied Materials & Interfaces,2018,10(49):42380-42386. [22] YUE J L,ZHOU Y N,YU X,et al. O3-type layered transition metal oxide Na(NiCoFeTi)1/4O2 as a high rate and long cycle life cathode material for sodium ion batteries[J]. Journal of Materials Chemistry A,2015,3(46):23261-23267. [23] WANG P F,YOU Y,YIN Y X,et al. Suppressing the P2-O2 phase transition of Na0.67Mn0.67Ni0.33O2 by magnesium substitution for improved sodium-ion batteries[J]. Ange-wandte Chemie International Edition,2016,55(26):7445-7449. [24] WANG P F,YAO H R,LIU X Y,et al. Ti-substituted NaNi0.5Mn0.5-xTixO2 cathodes with reversible O3-P3 phase transition for high-performance sodium-ion batteries[J]. Advanced Materials,2017,29(19):1700210. [25] HAN M H,GONZALO E,SHARMA N,et al. High-performance P2-phase Na2/3Mn0.8Fe0.1Ti0.1O2 cathode material for ambient-temperature sodium-ion batteries[J]. Chemistry of Materials,2015,28(1):106-116. [26] Pang W L,Zhang X H,Guo J Z,et al. P2-type Na2/3Mn1-xAlxO2 cathode material for sodium-ion batteries:Al-doped enhanced electrochemical properties and studies on the electrode kinetics[J]. Journal of Power Sources,2017,356:80-88. [27] YU T Y,Hwang J Y,Bae I T,et al. High-performance Ti-doped O3-type Na[Tix(Ni0.6Co0.2Mn0.2)1-x]O2 cathodes for practical sodium-ion batteries[J]. Journal of Power Sources,2019,422:1-8. [28] WANG X,LIU G,IWAO T,et al. Role of ligand-to-metal charge transfer in O3-type NaFeO2-NaNiO2 solid solution for enhanced electrochemical properties[J]. The Journal of Physical Chemistry C,2014,118(6):2970-2976. [29] NAYAK P K,GRINBLAT J,LEV M,et al. Electrochemical and structural characterization of carbon coated Li1.2Mn0.56Ni0.16Co0.08O2 and Li1.2Mn0.6Ni0.2O2 as cathode materials for Li-ion batteries[J]. Electrochimica Acta,2014,137:546-556. [30] LI Z Y,ZHANG J,GAO R,et al. Unveiling the role of Co in improving the high-rate capability and cycling performance of layered Na0.7Mn0.7Ni0.3-xCoxO2 cathode materials for sodium-ion batteries[J]. ACS Applied Materials & Interfaces,2016,8(24):15439-15448. [31] XIAO Y,ZHU Y F,YAO H R,et al. A stable layered oxide cathode material for high-performance sodium-ion battery[J]. Advanced Energy Materials,2019,9(19):1803978. [32] LI J,WANG J,HE X,et al. P2-Type Na0.67Mn0.8-Cu0.1Mg0.1O2 as a new cathode material for sodium-ion batteries:Insights of the synergetic effects of multi-metal substitution and electrolyte optimization[J]. Journal of Power Sources,2019,416:184-192. [33] KALIYAPPAN K,XAIO W,SHAM T-K,et al. High tap density Co and Ni containing P2-Na0.66MnO2 Buckyballs:A promising high voltage cathode for stable sodium-ion batteries[J]. Advanced Functional Materials,2018,28(32):1801898. [34] LIU W,CHEN T,LI J,et al. Investigation on the effect of Cu substitution on structure and Na-ion kinetics of layered P2-Na0.44Mn0.6Ni0.4O2 cathode material[J]. Solid State Ionics,2019,329:149-154. [35] TAPIA-RUIZ N,DOSE W M,SHARMA N,et al. High voltage structural evolution and enhanced Na-ion diffusion in P2-Na2/3Ni1/3-xMgxMn2/3O2(0≤ x ≤ 0.2) cathodes from diffraction,electrochemical and ab initio studies[J]. Energy & Environmental Science,2018,11(6):1470-1479. [36] ZHANG X H,PANG W L,WAN F,et al. P2-Na2/3Ni1/3Mn5/9Al1/9O2 microparticles as superior cathode material for sodium-ion batteries:Enhanced properties and mechanism via graphene connection[J]. ACS Applied Materials & Interfaces,2016,8(32):20650-20659. [37] BI K,ZHAO S X,HUANG C,et al. Improving low-temperature performance of spinel LiNi0.5Mn1.5O4 electrode and LiNi0.5Mn1.5O4/Li4Ti5O12 full-cell by coating solid-state electrolyte Li-Al-Ti-P-O[J]. Journal of Power Sources,2018,389:240-248. [38] DENG Y F,ZHAO S X,XU Y H,et al. Effect of temperature of Li2O-Al2O3-TiO2-P2O5 solid-state electrolyte coating process on the performance of LiNi0.5Mn1.5O4 cathode materials[J]. Journal of Power Sources,2015,296:261-267. [39] HUANG J,LUO J. Composites of sodium manganese oxides with enhanced electrochemical performance for sodium-ion batteries:Tailoring properties via controlling microstructure[J]. Science China Technological Sciences,2016,59(7):1042-1047. [40] QIAO R,DAI K,MAO J,et al. Revealing and suppressing surface Mn(II) formation of Na0.44MnO2 electrodes for Na-ion batteries[J]. Nano Energy,2015,16:186-195. [41] CAO Y,XIAO L,WANG W,et al. Reversible sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life[J]. Adv. Mater.,2011,23(28):3155-3160. [42] BUCHER N,HARTUNG S,NAGASUBRAMANIAN A,et al. Layered NaxMnO2+z in sodium ion batteries influence of morphology on cycle performance[J]. ACS Applied Materials & Interfaces,2014,6(11):8059-8065. [43] 谢永纯,王成,蒋芳,等. 钠锰比对NaxMnO2的性能和钠离子脱嵌过程的影响[J]. 电化学,2018,24(4):375-384. XIE Yongchun,WANG Cheng,JIANG Fang,et al. Influences of Na-Mn ratio on electrochemical performances and intercalation-deintercalation processes of sodium ion in NaxMnO2[J]. Journal of Electrochemical,2018,24(4):375-384. |