机械工程学报 ›› 2020, Vol. 56 ›› Issue (9): 223-233.doi: 10.3901/JME.2020.09.223
张鹏程1, 温秋玲1, 姜峰1, 沈少鑫2, 陆静1
收稿日期:
2019-05-30
修回日期:
2020-01-19
出版日期:
2020-05-05
发布日期:
2020-05-29
通讯作者:
温秋玲(通信作者),女,1986出生,博士,讲师。主要研究方向为微纳制造及脆性材料的特种加工。E-mail:qlwen@hqu.edu.cn
作者简介:
张鹏程,男,1994年出生。主要研究方向为激光微纳加工。E-mail:17013080044@stu.hqu.edu.cn;姜峰,男,1981年出生,博士,教授。主要研究方向为先进制造技术。E-mail:jiangfeng@hqu.edu.cn;沈少鑫,男,1988年出生,博士,讲师。主要研究方向为全息光刻制备二维、三维微纳结构。E-mail:sxshen@hqu.edu.cn;陆静,女,1981年出生,博士,教授。主要研究方向为硬脆材料的高效精密加工。E-mail:lujing26@hqu.edu.cn
基金资助:
ZHANG Pengcheng1, WEN Qiuling1, JIANG Feng1, SHEN Shaoxin2, LU Jing1
Received:
2019-05-30
Revised:
2020-01-19
Online:
2020-05-05
Published:
2020-05-29
摘要: 纳米孔阵列在生物检测、传感器、发光器件、光学调制和新能源等领域具有重要的应用。综述了目前几种主流的纳米孔阵列加工技术的基本原理、研究进展、加工效率、加工精度、加工质量、适用范围,并比较了这几种加工方法各自的优势及其局限性。最后指出了纳米孔阵列加工技术当前所面临的挑战和今后的发展方向,以期为大面积纳米孔阵列的高效率、高精度、高质量、低成本制造提供新思路。
中图分类号:
张鹏程, 温秋玲, 姜峰, 沈少鑫, 陆静. 纳米孔阵列加工技术研究进展[J]. 机械工程学报, 2020, 56(9): 223-233.
ZHANG Pengcheng, WEN Qiuling, JIANG Feng, SHEN Shaoxin, LU Jing. Research Progress in Machining Technology of Nanohole Arrays[J]. Journal of Mechanical Engineering, 2020, 56(9): 223-233.
[1] MAHIGIR A, CHANG T, BEHNAM A, et al. Plasmonic nanohole array for enhancing the SERS signal of a single layer of graphene in water[J]. Scientific Reports, 2017, 7(1):14044. [2] RIEDL J, DING Y, FLEMING A M, et al. Identification of DNA lesions using a third base pair for amplification and nanopore sequencing[J]. Nature Communications, 2015, 6(1):8807. [3] JAIN M, KOREN S, MIGA K H, et al. Nanopore sequencing and assembly of a human genome with ultra-long reads[J]. Nature Biotechnology, 2018, 36(4):338-345. [4] WADDELL N, PAJIC M, PATCH A, et al. Whole genomes redefine the mutational landscape of pancreatic cancer[J]. Nature, 2015, 518(7540):495-501. [5] PARLAK O, KEENE S T, MARAIS A, et al. Molecularly selective nanoporous membrane-based wearable organic electrochemical device for noninvasive cortisol sensing[J]. Science Advances, 2018, 4(7):2904. [6] LEE H, SUK J, KIM H, et al. Enhanced efficiency of crystalline Si solar cells based on kerfless-thin wafers with nanohole arrays[J]. Scientific Reports, 2018, 8(1):3504. [7] KANG S M, JANG S, LEE J, et al. Moth-eye TiO2 layer for improving light harvesting efficiency in perovskite solar cells[J]. Small, 2016, 12(18):2443-2449. [8] HU X, HUANG Z, ZHOU X, et al. Wearable large-scale perovskite solar-power source via nanocellular scaffold[J]. Advanced Materials, 2017, 29(42):1703236. [9] DONG P, YAN J, ZHANG Y, et al. AlGaN-based deep ultraviolet light-emitting diodes grown on nano-patterned sapphire substrates with significant improvement in internal quantum efficiency[J]. Journal of Crystal Growth, 2014, 395:9-13. [10] WANG Q, HAN W, WANG Y, et al. Tape nanolithography:A rapid and simple method for fabricating flexible, wearable nanophotonic devices[J]. Microsystems & Nanoengineering, 2018, 4(1):31. [11] DENG T, LI M, CHEN J, et al. Controllable fabrication of pyramidal silicon nanopore arrays and nanoslits for nanostencil lithography[J]. The Journal of Physical Chemistry C, 2014, 118(31):18110-18115. [12] GENET C, EBBESEN T W. Light in tiny holes[J]. Nature, 2007, 445(7123):39-46. [13] WU P, WEI H, YANG D, et al. Cone-shaped optical beam induced by nanohole array[J]. Optics Communications, 2019, 443:216-220. [14] STĘPNIOWSKI W J, DUREJKO T, MICHALSKADOMAŃSKA M, et al. Characterization of nanoporous anodic aluminum oxide formed on laser pre-treated aluminum[J]. Materials Characterization, 2016, 122:130-136. [15] ZARASKA L, GAWLAK K, GURGUL M, et al. Morphology of nanoporous anodic films formed on tin during anodic oxidation in less commonly used acidic and alkaline electrolytes[J]. Surface and Coatings Technology, 2019, 362:191-199. [16] ZARASKA L, GILEK D, GAWLAK K, et al. Formation of crack-free nanoporous tin oxide layers via simple one-step anodic oxidation in NaOH at low applied voltages[J]. Applied Surface Science, 2016, 390:31-37. [17] ZHU K, QI H, SUN X, et al. Anodic oxidation of diuron using Co3O4/graphite composite electrode at low applied current[J]. Electrochimica Acta, 2019, 299:853-862. [18] ATEŞ S, BARAN E, YAZICI B. The nanoporous anodic alumina oxide formed by two-step anodization[J]. Thin Solid Films, 2018, 648:94-102. [19] SULKA G D, KAPUSTA-KOŁODZIEJ J, BRZÓZKA A, et al. Anodic growth of TiO2 nanopore arrays at various temperatures[J]. Electrochimica Acta, 2013, 104:526-535. [20] NISHINAGA O, KIKUCHI T, NATSUI S, et al. Rapid fabrication of self-ordered porous alumina with 10-/sub-10-nm-scale nanostructures by selenic acid anodizing[J]. Sci. Rep., 2013, 3:2748. [21] XUE T, XU Q, LI Y, et al. A method of controlling the hole size of nanopores array on anodic aluminum oxide[J]. Materials Letters, 2018, 215:183-186. [22] 刘皓,朱丽丽,徐艳芳,等. 孔间距和孔径连续可调的PAA模板的制备[J]. 化学工程, 2017(2):12-16. LIU Hao, ZHU Lili, XU Yanfeng, et al. Fabrication of PAA templates with continuously adjustable inter-pore distance and pore diameter[J]. Chemical Engineering (China), 2017(2):12-16 [23] GAO Y, HAN A, MIAO F, et al. Preparation of metallic nanopore arrays using template-guided electrochemical etching[J]. Materials Letters, 2010, 64(9):1028-1030. [24] WANG Z, FENG G, WANG S, et al. Improving the quality of femtosecond laser processing micro-hole array by coated with aluminum film on fused silica sheet[J]. Optik-International Journal for Light and Electron Optics, 2017, 128:178-184. [25] CHEN L, ZHOU Y, LI Y, et al. Microsphere enhanced optical imaging and patterning:From physics to applications[J]. Applied Physics Reviews. 2019, 6(2):21304. [26] SRISUAI N, HORPRATHUM M, EIAMCHAI P, et al. Development of nanohole array patterned by laser interference lithography technique[J]. Key Engineering Materials, 2016, 675-676:41-44. [27] STOIAN R, BHUYAN M K, ZHANG G, et al. Ultrafast Bessel beams; advanced tools for laser materials processing[J]. Advanced Optical Technologies. 2018, 3(7):165-174. [28] FALCÓN CASAS I, KAUTEK W. Subwavelength nanostructuring of gold films by apertureless scanning probe lithography assisted by a femtosecond fiber laser oscillator[J]. Nanomaterials, 2018, 8(7):536. [29] CHIMMALGI A, CHOI T Y, GRIGOROPOULOS C P, et al. Femtosecond laser aperturless near-field nanomachining of metals assisted by scanning probe microscopy[J]. Applied Physics Letters, 2003, 82(8):1146-1148. [30] NEDYALKOV N, MIYANISHI T, OBARA M. Enhanced near field mediated nanohole fabrication on silicon substrate by femtosecond laser pulse[J]. Applied Surface Science, 2007, 253(15):6558-6562. [31] MIYANISHI T, SAKAI T, NEDYALKOV N, et al. Femtosecond-laser nanofabrication onto silicon surface with near-field localization generated by plasmon polaritons in gold nanoparticles with oblique irradiation[J]. Applied Physics A, 2009, 96(4):843-850. [32] SAKAI T, NEDYALKOV N, OBARA M. Positive and negative nanohole-fabrication on glass surface by femtosecond laser with template of polystyrene particle array[J]. Journal of Physics D:Applied Physics, 2007, 40(7):2102-2107. [33] 焦悦,陶海岩,季博宇,等. 用于飞秒激光纳米加工的TiO2粒子阵列诱导多种基底表面近场增强[J]. 物理学报, 2017(14):370-379. JIAO Yue, TAO Haiyan, JI Boyu, et al. Near field enhancement of TiO2 nanoparticle array on different substrates for femtosecond laser processing[J]. Acta Phys. Sin., 2017(14):370-379. [34] SAKAI T, NEDYALKOV N, OBARA M. Friction characteristics of submicrometre-structured surfaces fabricated by particle-assisted near-field enhancement with femtosecond laser[J]. Journal of Physics D:Applied Physics, 2007, 40(23):7485-7491. [35] SHEN S, REN X, LIU S, et al. Fabrication of large-scale photonic phased array using a holographic lithography system[J]. Optical Engineering, 2013, 52(9):095103. [36] BHUYAN M K, VELPULA P K, COLOMBIER J P, et al. Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams[J]. Applied Physics Letters. 2014, 104(2):21107. [37] MEYER R, FROEHLY L, GIUST R, et al. Extremely high-aspect-ratio ultrafast Bessel beam generation and stealth dicing of multi-millimeter thick glass[J]. Applied Physics Letters. 2019, 114(20):201105. [38] ZHANG G, CHENG G, BHUYAN M, et al. Efficient point-by-point Bragg gratings fabricated in embedded laser-written silica waveguides using ultrafast Bessel beams[J]. Optics Letters. 2018, 43(9):2161-2164. [39] YEMINI M, HADAD B, LIEBES Y, et al. The controlled fabrication of nanopores by focused electron-beam-induced etching[J]. Nanotechnology, 2009, 20(24):245302. [40] AHMADI A G, PENG Z, HESKETH P J, et al. Wafer-scale process for fabricating arrays of nanopore devices[J]. Journal of Micro Nanolithography MEMS and MOEMS, 2010, 9(2):33011. [41] SPINNEY P S, HOWITT D G, SMITH R L, et al. Nanopore formation by low-energy focused electron beam machining[J]. Nanotechnology, 2010, 21(37):375301. [42] GILBERT S M, DUNN G, AZIZI A, et al. Fabrication of subnanometer-precision nanopores in hexagonal boron nitride[J]. Scientific Reports, 2017, 7(1):15096. [43] HØJLUND-NIELSEN E, GREIBE T, MORTENSEN N A, et al. Single-spot e-beam lithography for defining large arrays of nano-holes[J]. Microelectronic Engineering, 2014, 121:104-107. [44] GIERAK J, MADOURI A, BIANCE A L, et al. Sub-5nm FIB direct patterning of nanodevices[J]. Microelectronic Engineering, 2007, 84(5-8):779-783. [45] MORIN A, LUCOT D, OUERGHI A, et al. FIB carving of nanopores into suspended graphene films[J]. Microelectronic Engineering, 2012, 97:311-316. [46] BIANCE A L, GIERAK J, BOURHIS É, et al. Focused ion beam sculpted membranes for nanoscience tooling[J]. Microelectronic Engineering, 2006, 83(4-9):1474-1477. [47] 林枫,徐宗伟,申雪岑. 微粒检测用微孔的聚焦离子束加工及其验证平台搭建[J]. 纳米技术与精密工程, 2015(6):443-447. LIN Feng, XU Zongwei, SHEN Xuecen. Micropore fabrication by focused ion beam for particle detection and development of its verification platform[J]. Nanotechnology and Precision Engineering, 2015(6):443-447. [48] 袁志山,蔺卡宾,杨浩杰,等. SiN薄膜纳米孔芯片制造工艺实验研究[J]. 东南大学学报, 2016(5):977-981. YUAN Zhishan, LIN Kabin, YANG Haojie, et al. Experimental research on fabrication of silicon nitride film nanopore device[J]. Journal of Southeast University, 2016(5):977-981. [49] 武灵芝,吴宏文,刘丽萍,等. 基于聚焦离子束的氮化硅纳米孔的制备和表征[J]. 生物物理学报, 2013(03):203-212. WU Lingzhi, WU Hongwen, LIU Liping, et al. Fabrication and characterization of solid nanopores with silicon nitride membranes by focus ion beam[J]. Acta Biophysica Sinica, 2013(03):203-212. [50] 徐雪峰,颜莎,王克明,等. 用聚焦离子束气体辅助刻蚀在LiNbO3上制备亚微米圆孔点阵[J]. 北京大学学报, 2009(6):937-940. XUE Xuefeng, YAN Sha, WANG Keming, et al. Gas-assisted etching of micro-hole lattice array on lithium niobate with focused ion beam[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2009(6):937-940. [51] YANG P, CHENG P, KAO C R, et al. Novel selfshrinking mask for sub-3nm pattern fabrication[J]. Scientific Reports, 2016, 6(1):29625. [52] FÜRJES P, FEKETE Z, ILLÉS L, et al. Effects of the focused ion beam parameters on nanopore milling in solid state membranes[J]. Procedia Engineering, 2012, 47:684-687. [53] TSENG Y M, GU R Y, CHANG C W, et al. Facile fabrication of periodic arrays of vertical Si nanoholes on (001) Si substrate with broadband light absorption properties[J]. Applied Surface Science, 2019, 480:131-137. [54] HUSSAIN S, POZZATO A, TORMEN M, et al. III-V site-controlled quantum dots on Si patterned by nanoimprint lithography[J]. Journal of Crystal Growth, 2016, 437:59-62. [55] BYEON K, HWANG S, LEE H. Fabrication of nano-hole array patterns on transparent conducting oxide layer using thermally curable nanoimprint lithography[J]. Microelectronic Engineering, 2008, 85(5-6):830-833. [56] CHANG W, WU J, LIN K, et al. Fabrication of gold subwavelength pore array using gas-assisted hot embossing with anodic aluminum oxide (AAO) template[J]. Microelectronic Engineering, 2011, 88(6):909-913. [57] BENDER M, OTTO M. Fabrication of nanostructures using a UV-based imprint technique[J]. Microelectronic Engineering, 2000, 53(1-4):233-236. [58] LEE J, CHEON S, CHOI J, et al. Shape-controlled fabrication of nanopatterned samarium-doped cerium oxide thin films using ultraviolet nanoimprint lithography[J]. Thin Solid Films, 2017, 636:552-557. [59] SI S, HOFFMANN M. Consecutive imprinting performance of large area UV nanoimprint lithography using Bi-layer soft stamps in ambient atmosphere[J]. Microelectronic Engineering, 2017, 176:62-70. [60] JUNG B, JO W, GWON M J, et al. Scanning probe lithography for fabrication of Ti metal nanodot arrays[J]. Ultramicroscopy, 2010, 110(6):737-740. [61] DENG T, WANG Y, CHEN Q, et al. Massive fabrication of silicon nanopore arrays with tunable shapes[J]. Applied Surface Science, 2016, 390:681-688. [62] 崔铮. 微纳米加工技术及其应用[M]. 北京:高等教育出版社, 2005. CUI Zheng. Nanofabrication technologies and applications[M]. Beijing:Higher Education Press, 2005. [63] SUNG H, QIANG T, YAO Z, et al. Vertical and bevel-structured SiC etching techniques incorporating different gas mixture plasmas for various microelectronic applications[J]. Scientific Reports, 2017, 7(1):3915. [64] GODOY A, CARLUCCI F G, LEITE D M G, et al. Plasma nanotexturing of amorphous carbon films by reactive ion etching[J]. Surface and Coatings Technology, 2018, 354:153-160. [65] XUE X, ZHOU K, CAI J, et al. Reactive ion etching of poly (cyclohexene carbonate) in oxygen plasma[J]. Microelectronic Engineering, 2018, 191:1-9. [66] JENNI L V, KUMAR L, HIEROLD C. Hybrid lithography based fabrication of 3D patterns by deep reactive ion etching[J]. Microelectronic Engineering, 2019, 209:10-15. [67] JUNG M, LEE S, BYUN Y T, et al. Fabrication of size controlled nanohole array on III-V semiconductor substrate by icp-rie using nanoporous alumina mask[J]. Solid State Phenomena, 2007, 124-126:1301-1304. [68] WU S, BAMMATTER M O,TANG W, et al. High aspect ratio etching of nanopores in PECVD SiC through AAO mask[C]//The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems. IEEE, 2013:986-989. [68] ZHAO Q, DENG Z, YANG D, et al. Study on multi-effect synergy mechanism of the ultrasonic compound electro-discharged and electrochemical machining and real time optimal controlling of on-line parameters[J]. Procedia CIRP, 2018, 68:150-155. [69] LISUNOVA Y, SPIESER M, JUTTIN R D D, et al. High-aspect ratio nanopatterning via combined thermal scanning probe lithography and dry etching[J]. Microelectronic Engineering, 2017, 180:20-24. |
[1] | 李立建, 杨朋霖, 姚建涛, 李冰, 王迎佳. 柔性并联多维力传感器协同优化设计[J]. 机械工程学报, 2024, 60(19): 20-31. |
[2] | 于振, 刘海林, 裘祖荣, 安琪. 基于IGCF-IBSCF算法和BCF-IBPSO-NESN算法的工业机器人末端执行器位姿重复性检测[J]. 机械工程学报, 2024, 60(19): 71-87. |
[3] | 赵家浩, 黄汉雄. 微乳突提高低力学刺激下微结构柔性压力传感器的性能[J]. 机械工程学报, 2024, 60(4): 222-229. |
[4] | 汪承杰, 于爽, 白晨朝, 杨朝旭, 张洪朋, 王帅, 孙玉清, 李国宾. 一种高灵敏度液压油污染物检测传感器研究[J]. 机械工程学报, 2023, 59(8): 42-49. |
[5] | 白晨朝, 汪承杰, 王笑天, 于爽, 张洪朋, 李伟, 孙玉清, 李国宾. 基于高梯度磁场结构电感式油液污染物检测传感器研究[J]. 机械工程学报, 2022, 58(23): 98-105. |
[6] | 王心怡, 王俊元, 张易霖, 陈小明, 陶凯, 李运甲. 一种基于复杂永磁体阵列的悬浮式振动能量采集器的精确模型及验证[J]. 机械工程学报, 2022, 58(20): 128-136. |
[7] | 张勇猛, 郭锞琛, 孙江坤, 余升, 肖定邦, 吴学忠. 全角模式半球谐振陀螺的阻尼误差修调与补偿技术研究[J]. 机械工程学报, 2022, 58(16): 145-152. |
[8] | 顾长智, 史皓天, 张洪朋, 马来好, 孙玉清. 一种用于油液磨粒监测的多线圈阻抗传感器[J]. 机械工程学报, 2022, 58(12): 10-17. |
[9] | 程真英, 江文姝, 方旭, 李瑞君, 黄强先. 基于遗传算法和Elman神经网络的接触式探头动态特性补偿[J]. 机械工程学报, 2022, 58(10): 24-30. |
[10] | 牛泽, 李凯, 白文斌, 孙圆圆, 龚卿青, 韩焱. 电感式油液磨粒传感器系统设计[J]. 机械工程学报, 2021, 57(12): 126-135. |
[11] | 黄琳雅, 赵立波, 罗国希, 李支康, 吴德志, 林启敬, 杨萍, 蒋庄德. 基于微机械电子技术的黏度测量传感器[J]. 机械工程学报, 2021, 57(8): 13-22. |
[12] | 史皓天, 张洪朋, 马来好, 曾乃斌, 刘城, 陈海泉. 高精度双线圈式磨粒传感器的设计及研究[J]. 机械工程学报, 2021, 57(2): 39-45. |
[13] | 邬如靖, 韩少峰, 广晨汉, 贺昌岩, 马科, 杨洋. 具有微力感知的眼科手术器械的设计与实现[J]. 机械工程学报, 2020, 56(17): 12-19. |
[14] | 张钊, 常洪龙. 模态局部化传感器研究进展[J]. 机械工程学报, 2020, 56(13): 32-40. |
[15] | 马来好, 张洪朋, 徐志伟, 乔卫亮, 陈海泉. 对置螺线管线圈的多功能检测模型及灵敏度研究[J]. 机械工程学报, 2020, 56(13): 60-66. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||