[1] 王威. 浅析机械制造设备远程监控与故障诊断技术[J].化工管理,2019(36):142-143. WANG Wei. Analysis of remote monitoring and fault diagnosis technology for machinery manufacturing equipment[J]. Chemical Industry Management,2019(36):142-143. [2] 姜旭峰,宗营,阮少军. 基于光谱-铁谱分析的航空发动机磨损故障诊断应用研究[J]. 化工时刊,2020,34(4):1-5. JIANG Xufeng,ZONG Ying,RUAN Shaojun. Application research of wear fault diagnosis of aero-engine based on spectrum-ferrography analysis[J]. Chemical Industry Times,2020,34(4):1-5. [3] 史爱峰,石立杰,梁一帆. 磨粒直接成像技术在设备润滑状态监测领域的应用[J]. 润滑与密封,2015,40(8):139-145,148. SHI Aifeng,SHI Lijie,LIANG Yifan. Application of direct wear debris laser imaging techniques in lubrication state monitoring for equipment[J]. Lubrication and Sealing, 2015,40(8):139-145,148. [4] 萧红,周威,罗久飞,等. 一种高梯度静磁场感应式全流量磨粒监测传感器[J]. 仪器仪表学报,2020,41(6):10-18. XIAO Hong,ZHOU Wei,LUO Jiufei,et al. An inductive sensor based on the high-gradient static magnetic field for full flow debris monitoring[J]. Chinese Journal of Scientific Instrument,2020,41(6):10-18. [5] 白晨朝,张洪朋,曾霖,等. 应用磁性纳米材料的电感式油液金属磨粒检测传感器[J]. 光学精密工程,2019,27(9):1960-1967. BAI Chenzhao,ZHANG Hongpeng,ZENG Lin,et al. Inductive oil detection sensor based on magnetic nanomaterials[J]. Optics and Precision Engineering,2019,27(9):1960-1967. [6] TUCKER J E,SCHULTZ A,LU C,et al. Lasernet fines optical wear debris monitor[C]//Swansea:International Conference on Condition Monitoring. 1999:445-452. [7] 张兴明,张洪朋,陈海泉,等. 微流体油液检测芯片分辨率-频率特性研究[J]. 仪器仪表学报,2014,35(2):427-433. ZHANG Xingming,ZHANG Hongpeng,CHEN Haiquan,et al. Study on the resolution-frequency characteristic of microfluidic oil detection chip[J]. Chinese Journal of Scientific Instrument,2014,35(2):427-433. [8] 王强,张洪朋,张剑锋,等. 用于微流体油液检测芯片的电阻检测法[C]//扬州:2015光学精密工程论坛论文集,2015:6. WANG Qiang,ZHANG Hongpeng,ZHANG Jianfeng, et al. Resistance detection method for microfluid oil detection chip[C]//Yangzhou:Changchun Institute of Optics and Mechanics,2015:6. [9] DU Li,ZHE Jiang,CARLETTA Joan. Real-time monitoring of wear debris in lubrication oil using a microfluidic inductive Coulter counting device[J]. Microfluidics and Nanofluidics,2010,9(6):1241-1245. [10] 牛泽,李凯,白文斌,等. 电感式油液磨粒传感器系统设计[J]. 机械工程学报,2021,57(12):126-135. NIU Ze,LI Kai,BAI Wenbin,et al. Inductive oil wear sensor system design[J]. Chinese Journal of Mechanical Engineering,2021,57(12):126-135. [11] DU L,ZHU X,HAN Y,et al. High throughput wear debris detection in lubricants using a resonance frequency division multiplexed sensor[J]. Tribolgy Letters,2013,51(4):453-60. [12] 郭翠娟,张猛,荣锋. 对置铁氧体磁芯式油液磨粒检测传感器[J]. 仪表技术与传感器,2020(11):15-20. GUO Cuijuan,ZHANG Meng,RONG Feng. Ferrite core type oil abrasive particle detection sensor[J]. Instrument Technology and Sensor,2020(11):15-20. [13] 史皓天,张洪朋,马来好,等. 高精度双线圈式磨粒传感器的设计及研究[J]. 机械工程学报,2021,57(2):39-45. SHI Haotian,ZHANG Hongpeng,MA Laihao,et al. Design and research of high sensitivity double-coil wear debris sensor[J]. Chinese Journal of Mechanical Engineering,2021,57(2):39-45. [14] MA L,ZHANG H,QIAO W,et al. oil metal debris detection sensor using ferrite core and flat channel for sensitivity improvement and high throughput[J]. IEEE Sensors Journal,2020,20(13):7303-7309. [15] 曾霖. 基于微阻抗分析的船机油液污染物区分检测机理研究[D]. 大连:大连海事大学,2019. ZENG Lin. Distinguishing detection mechanism of hydraulic oil contaminants based on micro impedance analysis[D]. Dalian:Dalian Maritime University,2019. |