• CN:11-2187/TH
  • ISSN:0577-6686

›› 1999, Vol. 35 ›› Issue (6): 5-9.

• 论文 • 上一篇    下一篇

扫码分享

Huston多体系统动力学方法的矩阵分析

员超;宗光华;刘又午   

  1. 北京航空航天大学机器人研究所;天津大学
  • 发布日期:1999-11-01

MATRIX ANALYSIS OF MULTIBODY SYSTEM DYNAMICS DESCRIBED BY HUSTON

Yuan Chao;Zong Guanghua;Liu Youwu   

  1. Beijing University of Aeronautics and Astronautics Tianjing University
  • Published:1999-11-01

摘要: 将多体系统动力学方程Huston标分量形式的描述转换成为矩阵形式,建立了Newton-Euler形式的Huston方法描述的多体系统动力学方程。在矩阵展开过程中,克服了按低序体阵列排序(由高序体向低序体)求和难于形成一般形式的矩阵表示的障碍,建立了按自然数序列排序(由低序体向高序体)求和的描述系统。同时将变换矩阵转变为各体相对(角)速度对Bk体绝对(角)速度贡献的控制矩阵,实现了对变换矩阵展开的一般表示。

关键词: 低序体阵列, 多体系统动力学, 矩阵分析, 变邻域搜索, 不确定知识化制造环境, 滚动时域, 航空发动机装配车间, 遗传算法, 自进化

Abstract: The equation of the multibody system dynamics with the scalar component form used in Huston's method is converted into one with the matrix form and the dynamic equation with Newton-Euler form is established. In the process of unfolding matrices, an obstacle is overcome, which is difficult to form general expressions from high numbered bodies to low numbered bodies when the matrices are summed, so that a describing system from low numbered bodies to light numbered bodies arranged in the natural numbers array is established, in which the transformation matrix is used concurrently as the control matrix which represents the contribution of the relative (angular) velocity of every body to the absolute (angular) velocity of the body Bk, thus, it realizes to give a general expression to the unfolded transformation matrix.

Key words: Array of low numbered bodies, Matrix analysis, Multibody system dynamics, Aero-engine assembly shop, Genetic algorithm, Rolling horizon, Self-evolution, Uncertain knowledgeable manufacturing environment, Variable neighbourhood search

中图分类号: