• CN:11-2187/TH
  • ISSN:0577-6686

›› 2004, Vol. 40 ›› Issue (5): 17-22.

• 论文 • 上一篇    下一篇

扫码分享

间隙非线性齿轮系统周期解结构及其稳定性研究

郜志英;沈允文;李素有;刘梦军   

  1. 西北工业大学机电工程学院
  • 发布日期:2004-05-15

RESEARCH ON THE PERIODIC SOLUTION STRUCTURE AND ITS STABILITY OF NONLINEAR GEAR SYSTEM WITH CLEARANCE

Gao Zhiying;Shen Yunwen;Li Suyou;Liu Mengjun   

  1. School of Mechanical Engineering, Northwestern Polytechnical University
  • Published:2004-05-15

摘要: 基于含有间隙的单自由度齿轮系统非线性动力学模型,运用伪不动点追踪法探讨了系统状态空间中同时存在的多重周期解,研究了阻尼参数和激励频率变化时系统周期解结构的变化,并进一步由预测—校正算法研究了各周期解的稳定性及分岔情况。研究结果表明,伪不动点追踪法可以有效地用于求解非线性动力系统的多重周期解结构,并可为周期运动的稳定性和分岔规律的研究提供良好的迭代初值,而系统的稳定性分岔规律则有助于更加细致地研究通向混沌的途径。

关键词: 非线性齿轮系统, 分岔, 数值模拟, 稳定性, 周期解结构

Abstract: Based on nonlinear dynamic model of single freedom gear system with clearance, the structure of multi-periodic solution in state space is researched by using of the quasi-fixed-point trace (QFPT) method, and the periodic solution’s structure which how to change with the parameters of damping ratio and frequency is discussed. The stability and bifurcation of periodic motion are researched by the Predict-correct method. Results show that the QFPT method can be used to solve the multi periodic solution structure of nonlinear dynamic system effectively and provide a good foundation for researching the problems of the stability and bifurcation of periodic motion. The discussions of stability and bifurcation are help to more deeply research the road of leading to chaos.

Key words: Bifurcation, Nonlinear gear system, Numerical simulation, Periodic solution’s structure, Stability

中图分类号: