• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (8): 272-282.doi: 10.3901/JME.2025.08.272

• 可再生能源与工程热物理 • 上一篇    

扫码分享

融合光纤传感数据与门控循环神经网络的风电机组载荷预测方法

肖钊1, 曹智辉2, 邓杰文1, 段书用3, 赵前程1, 戴巨川1, 陶洁2   

  1. 1. 湖南科技大学机电工程学院 湘潭 411201;
    2. 湖南科技大学计算机科学与工程学院 湘潭 411201;
    3. 智能配用电装备与系统全国重点实验室(河北工业大学) 天津 300401
  • 收稿日期:2024-06-21 修回日期:2024-10-11 发布日期:2025-05-10
  • 作者简介:肖钊,男,1987年出生,博士,副教授。主要研究方向为风电大数据挖掘和结构可靠性优化设计。E-mail:xnxzh501@hnust.edu.cn;陶洁(通信作者),女,1980年出生,博士,副教授。主要研究方向为机器学习、数据挖掘、机械故障诊断等。E-mail:caroltao@hnust.edu.cn
  • 基金资助:
    国家重点研发计划(2022YFF0608700)、湖南省杰出青年基金(2024JJ2031)、湖南省自然科学基金(2023JJ30265)和湖南省科技创新计划(2023RC3174)资助项目。

Wind Turbine Load Prediction Method Combining Fiber Bragg Grating Sensor Data and Gated Recurrent Units Neural Network

XIAO Zhao1, CAO Zhihui2, DENG Jiewen1, DUAN Shuyong3, ZHAO Qiancheng1, DAI Juchuan1, TAO Jie2   

  1. 1. School of Mechanical and Electrical Engineering, Hunan University of Science and Technology, Xiangtan 411201;
    2. School of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201;
    3. State Key Laboratory of Intelligent Power Distribution Equipment and System, Hebei University of Technology, Tianjin 300401
  • Received:2024-06-21 Revised:2024-10-11 Published:2025-05-10

摘要: 风电机组服役环境恶劣,对运行载荷的监测和分析是提升设备可靠性和发电性能的关键因素,由于载荷监测设备成本高昂,现役风电机组并未大范围安装载荷传感器,对风机载荷进行实时监测。为此,提出一种基于门控循环神经网络(Gated recurrent unit neural network,GRU)的风机载荷预测方法,利用少量载荷测试数据和数据采集与监视控制系统(Supervisory control and data acquisition,SCADA)数据进行载荷预测。该方法采用机理知识和皮尔逊相关性分析确定影响风电机组运行载荷关键参数,然后选取SCADA中相关的实时数据作为模型输入,通过门控循环神经网络实现风机载荷的实时预测。试验中对极端运行工况下的载荷进行预测,并将GRU模型与MLP、LSTM、RNN模型进行了对比,结果表明GRU模型在预测精度及误差最小化方面表现更好。最后,通过多参数的消融试验,证明GRU模型具有较强的鲁棒性,可以利用现有SCADA数据实现对大规模风电机组载荷进行预测,为进一步风电机组结构状态评估和寿命预测提供支撑。

关键词: 风电机组载荷预测, 光纤光栅传感器, 门控循环神经网络, 状态评估

Abstract: Wind turbines operate in harsh environments, and monitoring and analyzing operating loads are key factors in improving equipment reliability and power generation performance. Due to the high cost of load monitoring equipment, load sensors are not widely installed on existing wind turbines for real-time monitoring. Therefore, a wind turbine load prediction method based on gated recurrent units neural network(GRU) is proposed, which uses a small amount of load test data and supervisory control and data acquisition(SCADA) data for load prediction. This method uses mechanistic knowledge and pearson correlation analysis to determine the key parameters affecting the operating load of wind turbines, then selects relevant real-time data in SCADA as model input, and realizes the real-time prediction of wind turbine load through a gated recurrent neural network. In the experiment, the load under extreme operating conditions is predicted, and the GRU model is compared with the MLP, LSTM, and RNN models. The results show that the GRU model performed better in prediction accuracy and error minimization. Finally, through multi-parameter ablation experiments, it is proved that the GRU model has strong robustness and can use existing SCADA data to predict the load of large-scale wind turbines. And this method can provide support for further structural status assessment and life prediction of wind turbines.

Key words: load prediction of wind turbines, fiber bragg grating sensor, gated recurrent neural network, state assessment

中图分类号: