• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (7): 49-76.doi: 10.3901/JME.2025.07.049

• 特邀专栏:先进纤维增强复合材料加工 • 上一篇    下一篇

扫码分享

纤维增强复合材料磨削力解析建模与控制工艺策略研究进展

高腾1, 许文昊1, 张彦彬1, 刘明政1, 徐培明2, 安庆龙3, 王一奇4, 王大中5, 李长河1   

  1. 1. 青岛理工大学教育部工业流体节能与污染控制重点实验室 青岛 266520;
    2. 泰山体育产业集团有限公司 德州 253600;
    3. 上海交通大学机械工程学院 上海 200240;
    4. 大连理工大学机械工程学院 大连 116024;
    5. 上海工程技术大学机械与汽车工程学院 上海 201620
  • 收稿日期:2024-06-12 修回日期:2024-10-10 发布日期:2025-05-12
  • 作者简介:高腾,男,1993年出生,博士。主要研究方向为复合材料洁净与精密制造。E-mail:qdlg_gt@163.com
    李长河(通信作者),男,1966年出生,博士,教授,博士研究生导师。主要研究方向为智能与洁净精密制造。E-mail:sy_lichanghe@163.com
  • 基金资助:
    山东省自然科学基金(ZR2022QE028,ZR2023QE057)和国家自然科学基金(52375447,52205481,52105457)资助项目。

Research Progress on Analytical Modeling and Control Process Strategy of Grinding Force for Fiber-reinforced Composites

GAO Teng1, XU Wenhao1, ZHANG Yanbin1, LIU Mingzheng1, XU Peiming2, AN Qinglong3, WANG Yiqi4, WANG Dazhong5, LI Changhe1   

  1. 1. Key Lab of Industrial Fluid Energy Conservation and Pollution Control of Ministry of Education, Qingdao University of Technology, Qingdao 266520;
    2. Taishan Sports Industry Group Co., Ltd, Dezhou 253600;
    3. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240;
    4. School of Mechanical Engineering, Dalian University of Technology, Dalian 116024;
    5. School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201620
  • Received:2024-06-12 Revised:2024-10-10 Published:2025-05-12

摘要: 纤维增强复合材料(Fiber-reinforced composites,FRC)由于比强度和比刚度高且能实现材料、结构和性能的一体化设计制造,已成为航空航天等高端装备减重增效的优选材料。精密磨削是FRC成形后保证装配精度必需的加工方法,FRC高质高效低损伤磨削已成为学术界与工业界的研究与关注焦点。磨削力建模是有效控制FRC加工损伤和保证表面完整性的关键。本文首先揭示了陶瓷基和树脂基FRC在不同纤维取向(Fiber orientation angle, FOA)和编织表面以脆性断裂为主的磨削材料去除机理。其次,分析了砂轮几何重构和FRC材料模型,综述了不同磨削方式的FRC磨削力微观解析建模方法,进行了磨削力模型误差对比和误差来源分析,总结了磨削参数和FOA对磨削力的影响规律。进一步地,综述了包括超声振动、砂轮优化设计、微量润滑和激光辅助的磨削力控制工艺策略,并进行了各种工艺方法对磨削力降低能力的对比。最后,展望了FRC磨削材料去除力学行为和磨削力建模的应用拓展和研究空白,为工业界与学术界提供技术支持与理论指导。

关键词: 纤维复合材料, 磨削, 力模型, 陶瓷基, 树脂基

Abstract: Fiber-reinforced composites (FRC) with high specific strength and stiffness, have become the preferred material for weight reduction of aerospace equipment due to their ability to integrate design and manufacture of material structure and performance. Precision grinding is a necessary machining method to ensure assembly tolerance and accuracy after CFRP forming. The high-quality and low-damage grinding of FRC has become a focus of research and attention in both academia and industry. Grinding force modeling is crucial for effectively controlling FRC machining damage and ensuring surface integrity. Firstly, the study reveals the grinding material removal mechanism dominated by brittle fracture on different FOAs and woven surfaces of ceramic based and resin based FRCs. Secondly, the geometric reconstruction of the grinding wheel and the FRC material model are analyzed, and the force modeling approachs of FRCs for different grinding methods are reviewed. Simultaneously, the error comparison and source analysis of predictive models are carried out. The influence of grinding parameters and FOAs on grinding force is summarized. Furthermore, the grinding force control process strategies including ultrasonic vibration, optimized design of grinding wheels, minimum quantity lubrication, and laser assistance are reviewed, and various strategies are compared for their ability to reduce grinding force. Finally, the application expansion and research gap of FRC grinding material removal mechanical behavior and mechanical modeling are discussed, providing technical support and theoretical guidance for the industry and academia.

Key words: fiber-reinforced composites, grinding, mechanical model, ceramic matrix, resin matrix

中图分类号: