机械工程学报 ›› 2025, Vol. 61 ›› Issue (7): 49-76.doi: 10.3901/JME.2025.07.049
高腾1, 许文昊1, 张彦彬1, 刘明政1, 徐培明2, 安庆龙3, 王一奇4, 王大中5, 李长河1
收稿日期:
2024-06-12
修回日期:
2024-10-10
发布日期:
2025-05-12
作者简介:
高腾,男,1993年出生,博士。主要研究方向为复合材料洁净与精密制造。E-mail:qdlg_gt@163.com基金资助:
GAO Teng1, XU Wenhao1, ZHANG Yanbin1, LIU Mingzheng1, XU Peiming2, AN Qinglong3, WANG Yiqi4, WANG Dazhong5, LI Changhe1
Received:
2024-06-12
Revised:
2024-10-10
Published:
2025-05-12
摘要: 纤维增强复合材料(Fiber-reinforced composites,FRC)由于比强度和比刚度高且能实现材料、结构和性能的一体化设计制造,已成为航空航天等高端装备减重增效的优选材料。精密磨削是FRC成形后保证装配精度必需的加工方法,FRC高质高效低损伤磨削已成为学术界与工业界的研究与关注焦点。磨削力建模是有效控制FRC加工损伤和保证表面完整性的关键。本文首先揭示了陶瓷基和树脂基FRC在不同纤维取向(Fiber orientation angle, FOA)和编织表面以脆性断裂为主的磨削材料去除机理。其次,分析了砂轮几何重构和FRC材料模型,综述了不同磨削方式的FRC磨削力微观解析建模方法,进行了磨削力模型误差对比和误差来源分析,总结了磨削参数和FOA对磨削力的影响规律。进一步地,综述了包括超声振动、砂轮优化设计、微量润滑和激光辅助的磨削力控制工艺策略,并进行了各种工艺方法对磨削力降低能力的对比。最后,展望了FRC磨削材料去除力学行为和磨削力建模的应用拓展和研究空白,为工业界与学术界提供技术支持与理论指导。
中图分类号:
高腾, 许文昊, 张彦彬, 刘明政, 徐培明, 安庆龙, 王一奇, 王大中, 李长河. 纤维增强复合材料磨削力解析建模与控制工艺策略研究进展[J]. 机械工程学报, 2025, 61(7): 49-76.
GAO Teng, XU Wenhao, ZHANG Yanbin, LIU Mingzheng, XU Peiming, AN Qinglong, WANG Yiqi, WANG Dazhong, LI Changhe. Research Progress on Analytical Modeling and Control Process Strategy of Grinding Force for Fiber-reinforced Composites[J]. Journal of Mechanical Engineering, 2025, 61(7): 49-76.
[1] 贾振元付饶,王福吉.碳纤维复合材料构件加工技术进展[J].机械工程学报,2023,59(19):348-374. JIA Zhenyuan,FU Rao,WANG Fuji. Research advance review of machining technology for carbon fiber reinforced polymer composite components[J]. Journal of Mechanical Engineering,2023,59(19):348-374. [2] WANG Q,FU R,WANG F J,et al. Effect of temperature distribution on interfacial bonding process between CFRTP composite and aluminum alloy during laser direct joining[J]. Applied Sciences-Basel,2023,13(21):11973. [3] M'SAOUBI R,AXINTE D,SOO S L,et al. High performance cutting of advanced aerospace alloys and composite materials[J]. CIRP Annals-Manufacturing Technology,2015,64(2):557-580. [4] ZHANG B,LU S X,RABIEY M,et al. Grinding of composite materials[J]. CIRP Annals-Manufacturing Technology,2023,72(2):645-671. [5] 陈冰,徐虎,王健,等.纤维增强复合材料磨削制孔加工技术研究进展[J].复合材料学报,2023,40(1):13-37. CHEN Bing,XU Hu,WANG Jian,et al. Research progress of fiber reinforced composites by grinding technology for hole making[J]. Acta Materiae Compositae Sinica,2023,40(01):13-37. [6] 王帅帅,段振景,刘吉宇,等.冷等离子体耦合微量润滑微铣削CFRP加工性能与机理研究[J].机械工程学报,2024,60(9):338-350. WANG Shuaishuai,DUAN Zhenjing,LIU Jiyu,et al. Study on the machining performance and mechanism of cold plasma coupled micro-lubrication micro-milling CFRP[J]. Journal of Mechanical Engineering,2024,60(9):338-350.. [7] WANG X N,WANG F J,GU T Y,et al. Computational simulation of the damage response for machining long fibre reinforced plastic (LFRP) composite parts:A review[J]. Composites Part a-Applied Science and Manufacturing,2021,143:106296. [8] 宋阳,曹华军,张金,等.纤维随机分布CFRP高速铣削比能模型与表面质量优化[J].机械工程学报,2024,60(1):65-74. SONG Yang,CAO Huajun,ZHANG Jin,et al. High speed milling specific cutting energy model of CFRP and its surface quality optimization based on random fiber distribution[J]. Journal of Mechanical Engineering,2024,60(1):65-74. [9] GAO T,ZHANG Y B,LI C H,et al. Fiber-reinforced composites in milling and grinding:Machining bottlenecks and advanced strategies[J]. Frontiers of Mechanical Engineering,2022,17(2):24. [10] TIAN J C,KANG R K,DONG Z G,et al. Multi-scale machining damages of CFRP circular cell honeycomb during end face machining[J]. Journal of Manufacturing Processes,2023,86:282-293. [11] 董志刚,王中旺,冉乙川,等.碳纤维增强陶瓷基复合材料超声振动辅助铣削加工技术的研究进展[J].机械工程学报,2024,60(9):26-56. DONG Zhigang,WANG Zhongwang,RAN Yichuan,et al. Advances in ultrasonic vibration-assisted milling of carbon fiber reinforced ceramic matrix composites[J]. Journal of Mechanical Engineering,2024,60(9):26-56. [12] XU J Y,YIN Y K,DAVIM J P,et al. A critical review addressing drilling-induced damage of CFRP composites[J]. Composite Structures,2022,294:115594. [13] YANG Z C,ZHU L D,LIN B,et al. The grinding force modeling and experimental study of ZrO2 ceramic materials in ultrasonic vibration assisted grinding[J]. Ceramics International,2019,45(7):8873-8889. [14] MAO C,WANG J L,ZHANG M J,et al. Prediction of grinding force by an electroplated grinding wheel with orderly-micro-grooves[J]. Chinese Journal of Mechanical Engineering,2023,36(1):116. [15] MENG Q Y,GUO B,ZHAO Q L,et al. Modelling of grinding mechanics:A review[J]. Chinese Journal of Aeronautics,2023,36(7):25-39. [16] QU S S,WEI C X,YANG Y Y,et al. Grinding mechanism and surface quality evaluation strategy of single crystal 4H-SiC[J]. Tribology International,2024,194:109515. [17] 陈磊,刘阳钦,唐川,等.面向超精密加工的微观材料去除机理研究进展[J].机械工程学报,2023,59(23):229-264. CHEN Lei,LIU Yangqin,TANG Chuan,et al. Research advance on material removal at microscale towards ultra-precision manufacturing[J]. Journal of Mechanical Engineering,2023,59(23):229-264. [18] ZHANG H Y,ZHAO Z G,LI J J,et al. Review on abrasive machining technology of SiC ceramic composites[J]. Micromachines,2024,15(1):106. [19] WEI C X,HE C L,CHEN G,et al. Material removal mechanism and corresponding models in the grinding process:A critical review[J]. Journal of Manufacturing Processes,2023,103:354-392. [20] AN Q L,CHEN J,MING W W,et al. Machining of SiC ceramic matrix composites:A review[J]. Chinese Journal of Aeronautics,2021,34(4):540-567. [21] 徐西鹏,黄辉,胡中伟,等.磨粒工具的研究现状及发展趋势[J].机械工程学报,2022,58(15):2-20. XU Xipeng,HUANG Hui,HU Zhongwei,et al. Development of abrasive tools:State-of-the-art and prospectives[J]. Journal of Mechanical Engineering,2022,58(15):2-20. [22] LIU Q,HUANG G Q,XU X P,et al. Influence of grinding fiber angles on grinding of the 2D-C/C-SiC composites[J]. Ceramics International,2018,44(11):12774-12782. [23] LIU Q,HUANG G Q,CUI C C,et al. Investigation of grinding mechanism of a 2D C/C-SiC composite by single-grain scratching[J]. Ceramics International,2019,45(10):13422-13430. [24] LI Y C,GE X,WANG H,et al. Study of material removal mechanisms in grinding of C/SiC composites via single-abrasive scratch tests[J]. Ceramics International,2019,45(4):4729-4738. [25] WANG Z W,BAO Y,FENG K,et al. Characterization,quantitative evaluation,and formation mechanism of surface damage in ultrasonic vibration assisted scratching of Cf/SiC composites[J]. Journal of the European Ceramic Society,2024,44(7):4502-4523. [26] RAN Y C,KANG R K,SUN J S,et al. Insight into crack propagation induced by fiber orientations during single grain scratching of SiCf/SiC composites using FEM[J]. Composites Part a-Applied Science and Manufacturing,2024,177:107928. [27] 王玉果,徐靖宇,林彬.石英纤维复合材料的磨削加工性能研究[J].天津大学学报,2019,52(4):337-345. WANG Yuguo,XU Jingyu,LIN Bin. Research on grinding properties of quartz fiber composites[J]. Journal of Tianjin University,2019,52(4):337-345. [28] GUO M X,TAO J B,WU C J,et al. High-speed grinding fracture mechanism of Cf/SiC composite considering interfacial strength and anisotropy[J]. Ceramics International,2023,49(2):2600-2612. [29] QU S S,YAO P,GONG Y D,et al. Modelling and grinding characteristics of unidirectional C-SiCs[J]. Ceramics International,2022,48(6):8314-8324. [30] WANG Q X,WEN J Z,WU C J,et al. Single diamond grit scratching of unidirectional Cf/SiC composite:Mechanical responses and fracture mechanism[J]. Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture,2024,238(5):669-681. [31] ZHANG Z K,YUAN S M,XU W W,et al. Damage behavior and removal mechanism of different yarn orientations 2.5D SiCf/SiC composites under single-abrasive scratch test[J]. Ceramics International,2022,48(20):30868-30883. [32] CAO C,SONG Q H,FU H,et al. Fiber orientation effects on grinding characteristics and removal mechanism of 2.5D Cf/SiC composites[J]. Chinese Journal of Aeronautics,2023,36(12):425-441. [33] ZAN Z L,GUO K,SUN J,et al. Investigation on scratching force and material removal mechanism of 3D SiCf/C-SiC composites during single grain scratching[J]. Journal of the European Ceramic Society,2022,42(13):5366-5379. [34] YIN J F,XU J H,DING W F,et al. Effects of grinding speed on the material removal mechanism in single grain grinding of SiCf/SiC ceramic matrix composite[J]. Ceramics International,2021,47(9):12795. [35] LUNA G G,AXINTE D,NOVOVIC D. Influence of grit geometry and fibre orientation on the abrasive material removal mechanisms of SiC/SiC ceramic matrix composites (CMCs)[J]. International Journal of Machine Tools& Manufacture,2020,157:103580. [36] LIU Q,HUANG G Q,XU X P,et al. A study on the surface grinding of 2D C/SiC composites[J]. International Journal of Advanced Manufacturing Technology,2017,93(5-8):1595-1603. [37] ZHANG L F,REN C Z,JI C H,et al. Effect of fiber orientations on surface grinding process of unidirectional C/SiC composites[J]. Applied Surface Science,2016,366:424-431. [38] ZHANG L F,WANG S,LI Z,et al. Influence Factors on Grinding Force in Surface Grinding of Unidirectional C/SiC Composites[J]. Applied Composite Materials,2019,26(3):1073-1085. [39] QU S S,GONG Y D,YANG Y Y,et al. Mechanical model and removal mechanism of unidirectional carbon fibre-reinforced ceramic composites[J]. International Journal of Mechanical Sciences,2020,173:105465. [40] QU S S,GONG Y D,YANG Y Y,et al. Grinding characteristics and removal mechanisms of unidirectional carbon fibre reinforced silicon carbide ceramic matrix composites[J]. Ceramics International,2019,45(3):3059-3071. [41] YANG Y Y,QU S S,GONG Y D. Investigating the grinding performance of unidirectional and 2.5D-C/SiCs[J]. Ceramics International,2021,47(4):5123-5132. [42] YIN J F,LI M,XU J H,et al. Edge chipping characteristics in grinding SiCf/SiC composite[J]. Ceramics International,2022,48(5):7126-7135. [43] WANG Y S,LI J T. Experimental study of the removal characteristics of C/SiC with different fiber structure arrangements for two-dimensional ultrasound-assisted grinding[J]. International Journal of Advanced Manufacturing Technology,2024,131(7-8):3467-3485. [44] WEI J H,WANG H J,LIN B,et al. Acoustic emission signal of fiber-reinforced composite grinding:Frequency components and damage pattern recognition[J]. International Journal of Advanced Manufacturing Technology,2019,103(1-4):1391-1401. [45] WANG Y G,WANG H J,WEI J H,et al. Finite element analysis of grinding process of long fiber reinforced ceramic matrix woven composites:Modeling,experimental verification and material removal mechanism[J]. Ceramics International,2019,45(13):15920-15927. [46] CAO J G,WU Y B,LU D,et al. Material removal behavior in ultrasonic-assisted scratching of SiC ceramics with a single diamond tool[J]. International Journal of Machine Tools& Manufacture,2014,79:49-61. [47] ANAND P S P,ARUNACHALAM N,VIJAYARA-GHAVAN L. Study on grinding of pre-sintered zirconia using diamond wheel[J]. Materials and Manufacturing Processes,2018,33(6):634-643. [48] GONG Y D,QU S S,YANG Y Y,et al. Some observations in grinding SiC and silicon carbide ceramic matrix composite material[J]. International Journal of Advanced Manufacturing Technology,2019,103(5-8):3175-3186. [49] 刘杰,李海滨,张小彦,等. 2D-C/SiC高速深磨磨削特性及去除机制[J].复合材料学报,2012,29(4):113-118. LIU Jie,LI Haibin,ZHANG Xiaoyan,et al. Investigation of grinding characteristics and removal mechanisms of 2D-C/SiC in high speed deep grinding[J]. Acta Materiae Compositae Sinica,2012,29(4):113-118. [50] LI M J,CHEN Y J,JIANG X Y,et al. Surface damage characteristics and identification based on acoustic emission in diamond point grinding carbon/carbon ceramic matrix composites[J]. Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture,2023. DOI:10.1177/09544054231209792. [51] YANG H T,ZHAO G L,XIA H J,et al. Effect of fiber orientation on material removal mechanisms in the machining of 3D Cf/SiC composite with a brazed diamond grinding rod:Experiment and simulation[J]. Journal of Manufacturing Processes,2024,114:18-38. [52] LIN B,WANG H J,WEI J H,et al. Diamond wheel grinding characteristics of 3D orthogonal quartz fiber reinforced silica ceramic matrix composite[J]. Chinese Journal of Aeronautics,2021,34(5):404-414. [53] DONG Z G,LIU S C,KANG R K,et al. SiO2f/SiO2 composite grinding characteristics based on maximum undistorted chip thickness[J]. Materials and Manufacturing Processes,2024,39(7):1009-1018. [54] GAO T,LI C H,WANG Y Q,et al. Carbon fiber reinforced polymer in drilling:From damage mechanisms to suppression[J]. Composite Structures,2022,286:115232. [55] NING F D,WANG H,CONG W L. Rotary ultrasonic machining of carbon fiber reinforced plastic composites:A study on fiber material removal mechanism through single-grain scratching[J]. International Journal of Advanced Manufacturing Technology,2019,103(1-4):1095-1104. [56] 周井文,秦文津,穆英娟,等.碳纤维复合材料铣削与磨削加工对比研究[J].金刚石与磨料磨具工程,2020,40(4):76-80. ZHOU Jingwen,QIN Wenjin,MU Yingjuan,et al. Comparative study on machining of CFRP by end mill and abrasive router[J]. Diamond& Abrasives Engineering,2020,40(4):76-80. [57] WANG H,NING F D,HU Y B,et al. Surface grinding of CFRP composites using rotary ultrasonic machining:A comparison of workpiece machining orientations[J]. International Journal of Advanced Manufacturing Technology,2018,95(5-8):2917-2930. [58] HU N S,ZHANG L C. A study on the grindability of multidirectional carbon fibre-reinforced plastics[J]. Journal of Materials Processing Technology,2003,140(1-3):152-156. [59] LIU S L,CHEN T,WU C Q. Rotary ultrasonic face grinding of carbon fiber reinforced plastic (CFRP):A study on cutting force model[J]. International Journal of Advanced Manufacturing Technology,2017,89(1-4):847-856. [60] 路冬,李志凯,融亦鸣,等.基于宏观各向异性碳纤维增强树脂基复合材料的切削仿真[J].复合材料学报,2014,31(3):584-590. LU Dong,LI Zhikai,RONG Yiming,et al. Cutting simulation of carbon fiber reinforced resin matrix composite material based on macroscopic anisotropy[J]. Acta Materiae Compositae Sinica,2014,31(3):584-590. [61] WANG F Y,XUAN S Y,CHANG Z Y,et al. Effect of grinding parameters on industrial robot grinding of CFRP and defect formation mechanism[J]. International Journal of Precision Engineering and Manufacturing-Green Technology,2024,11(2):427-438. [62] DONG Z G,WANG Z J,TIAN J C,et al. Investigation on tearing damage of CFRP circular cell honeycomb in end-face grinding[J]. Composite Structures,2023,325:427-438. [63] WEN Z H,ZHAO H,YAN X,et al. Grinding performance study of CF/epoxy and CF/PEEK composites[J]. Polymer Composites,2023,44(8):4565-4578. [64] WEN Z H,ZHAO H,YAN X,et al. Grinding performance investigation of multidirectional CF/PEEK composites-A comparative with unidirectional CF/PEEK[J]. Polymer Composites,2024,44(8):4565-4578. [65] LI L Y,ZHANG Y B,CUI X,et al. Mechanical behavior and modeling of grinding force:A comparative analysis[J]. Journal of Manufacturing Processes,2023,102:921-954. [66] 杨明辉,犇邓,易家乐,等.金属基复合材料切削去除机理与过程建模研究综述[J].机械工程学报,2023,59(19):460-476. YANG Minghui,DENG Ben,YI Jiale,et al. Review on removal mechanism and process modeling in machining of metal matrix composites[J]. Journal of Mechanical Engineering,2023,59(19):460-476. [67] ZHANG L C,WU Z H,WU C H,et al. On the numerical modelling of composite machining[J]. Composites Part B-Engineering,2022,241:110023. [68] GAO C Y,XIAO J Z,ZHANG L C,et al. On the static and dynamic properties of fiber-reinforced polymer composites:A three-phase constitutive model[J]. Journal of Thermoplastic Composite Materials,2017,30(11):1560-1577. [69] RAN Y C,KANG R K,DONG Z G,et al. Ultrasonic assisted grinding force model considering anisotropy of SiCf/SiC composites[J]. International Journal of Mechanical Sciences,2023,250:108311. [70] LIU H T,LIN J,SUN Y Z,et al. Micro model of carbon fiber/cyanate ester composites and analysis of machining damage mechanism[J]. Chinese Journal of Mechanical Engineering,2019,32(1):52. [71] MEI J W,DIAZ O G,AXINTE D A. An approach on capturing the influence of the stochasticity of fibre distributions for modelling the variability of cutting forces in composite materials[J]. Composites Part B-Engineering,2017,125:27-38. [72] 高腾,李长河,张彦彬,等.纳米增强生物润滑剂CFRP材料去除力学行为与磨削力预测模型[J].机械工程学报,2023,59(13):325-342. GAO Teng,LI Changhe,ZHANG Yanbin,et al. Mechanical behavior of material removal and predictive force model for CFRP grinding using nano reinforced biological lubricant[J]. Journal of Mechanical Engineering,2023,59(13):325-342. [73] CAO Y,ZHAO B,DING W F,et al. Intermittent cutting behavior and grinding force model in ultrasonic vibration-assisted grinding K4002 nickel-based superalloy[J]. International Journal of Advanced Manufacturing Technology,2024,131(5-6):3085-3102. [74] LIU M Z,LI C H,ZHANG Y B,et al. Analysis of grinding mechanics and improved grinding force model based on randomized grain geometric characteristics[J]. Chinese Journal of Aeronautics,2023,36(7):160-193. [75] WEI J H,WANG H J,LIN B,et al. A force model in single grain grinding of long fiber reinforced woven composite[J]. International Journal of Advanced Manufacturing Technology,2019,100(1-4):541-552. [76] ZHANG Y B,LI C H,JI H J,et al. Analysis of grinding mechanics and improved predictive force model based on material-removal and plastic-stacking mechanisms[J]. International Journal of Machine Tools& Manufacture,2017,122:81-97. [77] DONG Z G,ZHANG H T,KANG R K,et al. Mechanical modeling of ultrasonic vibration helical grinding of SiCf/SiC composites[J]. International Journal of Mechanical Sciences,2022,234:107701. [78] YAO L X,LIU Z Q,SONG Q H,et al. Numerical prediction of surface morphology and roughness in rotary ultrasonic face grinding SiO2f/SiO2 composite[J]. Journal of Materials Research and Technology-Jmr&T,2023,25:5917-5937. [79] ZHANG Z K,YUAN S M,GAO X X,et al. Analytical modelling of side grinding of orthogonal laminated SiCf/SiC composites based on effective elastic properties[J]. International Journal of Advanced Manufacturing Technology,2022,120(9-10):6419-6434. [80] ZHANG M H,SHAN C W,XIA Z W,et al. Dynamic mechanical model in grinding C/SiC composites[J]. International Journal of Mechanical Sciences,2024,268:109042. [81] AMIN M,YUAN S M,KHAN M Z,et al. Development of a generalized cutting force prediction model for carbon fiber reinforced polymers based on rotary ultrasonic face milling[J]. International Journal of Advanced Manufacturing Technology,2017,93(5-8):2655-2666. [82] AMIN M,YUAN S M,KHAN M Z,et al. Development of cutting force prediction model for carbon fiber reinforced polymers based on rotary ultrasonic slot milling[J]. Machining Science and Technology,2018,22(3):402-426. [83] ZHANG M H,XIA Z W,SHAN C W,et al. Analytical model of grinding force for ultrasonic-assisted grinding of C/SiC composites[J]. International Journal of Advanced Manufacturing Technology,2023,126(5-6):2037-2052. [84] SHI H Y,YUAN S M,ZHANG C,et al. A cutting force prediction model for rotary ultrasonic side grinding of CFRP composites considering coexistence of brittleness and ductility[J]. International Journal of Advanced Manufacturing Technology,2020,106(5-6):2403-2414. [85] WANG H,HU Y B,CONG W L,et al. A mechanistic model on feeding-directional cutting force in surface grinding of CFRP composites using rotary ultrasonic machining with horizontal ultrasonic vibration[J]. International Journal of Mechanical Sciences,2019,155:450-460. [86] WANG H,PEI Z J,CONG W L. A mechanistic cutting force model based on ductile and brittle fracture material removal modes for edge surface grinding of CFRP composites using rotary ultrasonic machining[J]. International Journal of Mechanical Sciences,2020,176:105551. [87] WANG H,PEI Z J,CONG W L. A feeding-directional cutting force model for end surface grinding of CFRP composites using rotary ultrasonic machining with elliptical ultrasonic vibration[J]. International Journal of Machine Tools& Manufacture,2020,152:103540. [88] GAO T,LI C H,YANG M,et al. Mechanics analysis and predictive force models for the single-diamond grain grinding of carbon fiber reinforced polymers using CNT nano-lubricant[J]. Journal of Materials Processing Technology,2021,290:116976. [89] GAO T,XU P,WANG W,et al. Force model of ultrasonic empowered minimum quantity lubrication grinding CFRP[J]. International Journal of Mechanical Sciences,2024,280:109522. [90] BIE W B,CHEN F,WANG X B,et al. Longitudinal-torsional coupled rotary ultrasonic machining end surface grinding of SiCf/SiC composites:a mechanical model of cutting force[J]. International Journal of Advanced Manufacturing Technology,2023,129(3-4):1227-1248. [91] QIAO G C,CHENG Z,ZHENG W,et al. Grinding force model for longitudinal-torsional ultrasonic-assisted face grinding of ceramic matrix composites[J]. International Journal of Advanced Manufacturing Technology,2022,120(11-12):7721-7733. [92] YAO L X,LIU Z Q,SONG Q H,et al. Prediction modelling of cutting force in rotary ultrasonic end grinding 2.5D woven SiO2f/SiO2 ceramic matrix composite[J]. Composite Structures,2023,304:116448. [93] NING F D,CONG W L,WANG H,et al. Surface grinding of CFRP composites with rotary ultrasonic machining:A mechanistic model on cutting force in the feed direction[J]. International Journal of Advanced Manufacturing Technology,2017,92(1-4):1217-1229. [94] ZHOU Y G,TIAN C C,JIA S Q,et al. Study on grinding force of two-dimensional ultrasonic vibration grinding 2.5D-C/SiC composite material[J]. Crystals,2023,13(1):151. [95] HUANG B,WANG W H,XIONG Y F,et al. Investigation of force modeling in ultrasonic vibration-assisted drilling SiCf/SiC ceramic matrix composites[J]. Journal of Manufacturing Processes,2023,96:21-30. [96] 王涛,王盛,乔伟林,等.单向C/SiC复合材料平面磨削的磨削力模型研究[J].中国机械工程,2019,30(17):2017-2021. WANG Tao,WANG Sheng,QIAO Weilin,et al. Research on grinding force model of plane grinding for unidirectional C/SiC composites[J]. China Mechanical Engineering,2019,30(17):2017-2021. [97] LIU Q,HUANG G Q,FANG C F,et al. Experimental investigations on grinding characteristics and removal mechanisms of 2D-Cf/C-SiC composites based on reinforced fiber orientations[J]. Ceramics International,2017,43(17):15266-15274. [98] DU J G,MING W Y,MA J,et al. New observations of the fiber orientations effect on machinability in grinding of C/SiC ceramic matrix composite[J]. Ceramics International,2018,44(12):13916-13928. [99] WANG H,NING F D,HU Y B,et al. Surface grinding of carbon fiber-reinforced plastic composites using rotary ultrasonic machining:Effects of tool variables[J]. Advances in Mechanical Engineering,2016,8(9):1687814016670284. [100] GAO T,ZHANG X P,LI C H,et al. Surface morphology evaluation of multi-angle 2D ultrasonic vibration integrated with nanofluid minimum quantity lubrication grinding[J]. Journal of Manufacturing Processes,2020,51:44-61. [101] 别文博,赵波,高国富,等.切向超声振动辅助成形磨削齿轮的切削系数建模与试验研究[J].机械工程学报,2022,58(7):295-308. BIE Wenbo,ZHAO Bo,GAO Guofu,et al. Analytical modeling and experimental investigation on cutting coefficient during tangential ultrasonic vibration-assisted forming grinding gear[J]. Journal of Mechanical Engineering,2022,58(7):295-308. [102] YANG Y Y,YANG M,LI C H,et al. Machinability of ultrasonic vibration-assisted micro-grinding in biological bone using nanolubricant[J]. Frontiers of Mechanical Engineering,2023,18(1):1. [103] SUN J A,LI C H,ZHOU Z M,et al. Material removal mechanism and force modeling in ultrasonic vibration-assisted micro-grinding biological bone[J]. Chinese Journal of Mechanical Engineering,2023,36(1):129. [104] LI H,LIN B,WAN S M,et al. An experimental investigation on ultrasonic vibration-assisted grinding of SiO2f/SiO2 composites[J]. Materials and Manufacturing Processes,2016,31(7):887-895. [105] 束静,廖文和,郑侃,等.旋转超声加工碳纤维复合材料研究现状与展望[J].航空学报,2024,45(13):628939. SHU Jing,LIAO Wenhe,ZHENG Kan,et al. Review on rotary ultrasonic machining of carbon fiber composites[J]. Acta Aeronautica et Astronautica Sinica,2024,45(13):628939. [106] ZHAO J S,ZHAO B,HAN M,et al. Grinding characteristics of ultra-high strength steel by ultrasonic vibration-assisted grinding with microcrystalline alumina wheel[J]. International Journal of Advanced Manufacturing Technology,2024,131(5-6):2109-2121. [107] CAO S Y,ZHANG X Y,WU C Q,et al. Towards understanding the material removal mechanism on the effect of ultrasonic vibration and anisotropy for unidirectional CFRP by scratching[J]. Journal of Materials Processing Technology,2024,324:118250. [108] WANG J J,ZHANG J F,FENG P F. Effects of tool vibration on fiber fracture in rotary ultrasonic machining of C/SiC ceramic matrix composites[J]. Composites Part B-Engineering,2017,129:233-242. [109] WANG D P,LU S X,XU D,et al. Research on material removal mechanism of C/SiC composites in ultrasound vibration-assisted grinding[J]. Materials,2020,13(8):1918. [110] LI Y C,REN C Z,WANG H,et al. Edge surface grinding of CFRP composites using rotary ultrasonic machining:Comparison of two machining methods[J]. International Journal of Advanced Manufacturing Technology,2019,100(9-12):3237-3248. [111] LIANG Y H,CHEN Y,ZHU Y J,et al. Investigations on tool clogging and surface integrity in ultrasonic vibration-assisted slot grinding of unidirectional CFRP[J]. International Journal of Advanced Manufacturing Technology,2021,112(5-6):1557-1570. [112] DING K,FU Y C,SU H H,et al. Study on surface/subsurface breakage in ultrasonic assisted grinding of C/SiC composites[J]. International Journal of Advanced Manufacturing Technology,2017,91(9-12):3095-3105. [113] ZHANG M H,PANG Z X,JIA Y X,et al. Understanding the machining characteristic of plain weave ceramic matrix composite in ultrasonic-assisted grinding[J]. Ceramics International,2022,48(4):5557-5573. [114] JIN J W,WANG X B,BIE W B,et al. Machinability of SiCf/SiC ceramic matrix composites using longitudinal-torsional coupled rotary ultrasonic machining[J]. International Journal of Advanced Manufacturing Technology,2024,131(5-6):2465-2476. [115] CHEN J,AN Q L,MING W W,et al. Investigation on machined surface quality in ultrasonic-assisted grinding of Cf/SiC composites based on fracture mechanism of carbon fibers[J]. International Journal of Advanced Manufacturing Technology,2020,109(5-6):1583-1599. [116] WANG H,HU Y B,CONG W L,et al. A novel investigation on horizontal and 3D elliptical ultrasonic vibrations in rotary ultrasonic surface machining of carbon fiber reinforced plastic composites[J]. Journal of Manufacturing Processes,2020,52:12-25. [117] WANG D P,FAN H J,XU D,et al. Research on grinding force of ultrasonic vibration-assisted grinding of C/SiC composite materials[J]. Applied Sciences-Basel,2022,12(20):10352. [118] PENG R T,ZHAO L F,TONG J W,et al. Design and evaluation of an internal-cooling grooved grinding wheel[J]. Journal of Manufacturing Processes,2022,73:1-16. [119] XIAO X W,JIN Y F,CHEN M L,et al. An internal cooling grinding wheel:From design to application[J]. Chinese Journal of Aeronautics,2023,36(11):465-482. [120] SASAHARA H,KIKUMA T,KOYASU R,et al. Surface grinding of carbon fiber reinforced plastic (CFRP) with an internal coolant supplied through grinding wheel[J]. Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology,2014,38(4):775-782. [121] LI H N,AXINTE D. Textured grinding wheels:A review[J]. International Journal of Machine Tools& Manufacture,2016,109:8-35. [122] 温东东,张晓红,万林林,等.仿鸟羽结构自润滑金刚石砂轮磨削碳化硅陶瓷实验研究[J].表面技术,2023,52(12):91-101. WEN Dongdong,ZHANG Xiaohong,WAN Linlin,et al. Experimental study on the grinding of silicon carbide ceramics with self-lubricating diamond wheels imitating bird feather structure[J]. Surface Technology,2023,52(12):91-101. [123] YUAN H P,GAO H,LIANG Y D. Fabrication of a new-type electroplated wheel with controlled abrasive cluster and its application in dry grinding of CFRP[J]. International Journal of Abrasive Technology,2010,3(4):299-315. [124] SHYHA I,HUO D,HESAMIKOJIDI P,et al. Performance of a new hybrid cutting-abrasive tool for the machining of fibre reinforced polymer composites[J]. The International Journal of Advanced Manufacturing Technology,2020,112(3-4):1101-1113. [125] OKUYAMA S,YUI A,KITAJIMA T. Grinding performance of a grain-arranged diamond wheel and a GC wheel against CFRP[J]. Journal of the Japan Society for Abrasive Technology,2011,55:611-615. [126] TAWAKOLI T,AZARHOUSHANG B. Intermittent grinding of ceramic matrix composites (CMCs) utilizing a developed segmented wheel[J]. International Journal of Machine Tools& Manufacture,2011,51(2):112-119. [127] LIANG Y H,CHEN Y,CHEN B B,et al. Feasibility of ultrasonic vibration assisted grinding for carbon fiber reinforced polymer with monolayer brazed grinding tools[J]. International Journal of Precision Engineering and Manufacturing,2019,20(7):1083-1094. [128] GUO Y,CHEN B,FU X J,et al. Experimental study on grinding 2.5D C/SiC composites by electroplated grinding wheel with ordered abrasive clusters[J]. Diamond and Related Materials,2024,142:110838. [129] HANDA D,SOORAJ V S. Eccentric sleeve grinding for thermal management and dry grinding of carbon fibre reinforced composites[J]. Journal of Reinforced Plastics and Composites,2023,42(7-8):346-362. [130] 魏建辉,刘明,高进城,等.吸湿老化后碳纤维增强乙烯基脂树脂复合材料高低温力学性能[J].复合材料学报,2023,40(6):3279-3290. WEI Jianhui,LIU Ming,GAO Jincheng,et al. Mechanical properties at elevated and cryogenic temperatures of carbon fiber reinforced vinylester resin composites after hygroscopic aging[J]. Acta Materiae Compositae Sinica. 2023,40(6):3279-3290. [131] HADDAD M,ZITOUNE R,EYMA F,et al. Study of the surface defects and dust generated during trimming of CFRP:Influence of tool geometry,machining parameters and cutting speed range[J]. Composites Part a-Applied Science and Manufacturing,2014,66:142-154. [132] YANG M,KONG M,LI C H,et al. Temperature field model in surface grinding:A comparative assessment[J]. International Journal of Extreme Manufacturing,2023,5(4):042011. [133] PERVAIZ S,KANNAN S,HUO D H,et al. Ecofriendly inclined drilling of carbon fiber-reinforced polymers (CFRP)[J]. International Journal of Advanced Manufacturing Technology,2020,111(7-8):2127-2153. [134] ISKANDAR Y,TENDOLKAR A,ATTIA M H,et al. Flow visualization and characterization for optimized MQL machining of composites[J]. CIRP Annals-Manufacturing Technology,2014,63(1):77-80. [135] COCOCCETTA N M,PEARL D,JAHAN M P,et al. Investigating surface finish,burr formation,and tool wear during machining of 3D printed carbon fiber reinforced polymer composite[J]. Journal of Manufacturing Processes,2020,56:1304-1316. [136] 石文天,王林,李杰,等.基于MQL的碳纤维复合材料制孔表面质量及切削力试验[J].表面技术,2023,52(5):235-246. SHI Wentian,WANG Lin,LI Jie,et al. Experiment on hole making surface quality and cutting force of carbon fiber reinforced composite based on MQL[J]. Surface Technology,2023,52(5):235-246. [137] SINGH A K,KUMAR A,SHARMA V,et al. Sustainable techniques in grinding:State of the art review[J]. Journal of Cleaner Production,2020,269:121876. [138] 杨简彰,王成勇,袁尧辉,等.微量润滑复合增效技术及其应用研究进展[J].中国机械工程,2022,33(5):506-528. YANG Jianzhang,WANG Chengyong,YUAN Yaohui,et al. State-of-the-art on MQL synergistic technologies and their applications[J]. China Mechanical Engineering,2022,33(5):506-528. [139] 贾东洲,李长河,张彦彬,等.钛合金生物润滑剂电牵引磨削性能及表面形貌评价[J].机械工程学报,2022,58(5):198-211. JIA Dongzhou,LI Changhe,ZHANG Yanbin,et al. Grinding performance and surface morphology evaluation of titanium alloy using electric traction bio micro lubricant[J]. Journal of Mechanical Engineering,2022,58(5):198-211. [140] 王晓铭,李长河,张彦彬,等.微量润滑赋能雾化与供给系统关键技术研究进展[J].表面技术,2022,51(9):1-14. WANG Xiaoming,LI Changhe,ZHANG Yanbin,et al. Research progress on key technology of enabled atomization and supply system of minimum quantity lubrication[J]. Surface Technology,2022,51(9):1-14. [141] 刘明政,李长河,张彦彬,等.低温冷风微量润滑磨削钛合金换热机理与对流换热系数模型[J].机械工程学报,2023,59(23):343-357. LIU Mingzheng,LI Changhe,ZHANG Yanbin,et al. Heat transfer mechanism and convective heat transfer coefficient model of cryogenic air minimum quantity lubrication grinding titanium alloy[J]. Journal of Mechanical Engineering,2023,59(23):343-357. [142] 吴喜峰,许文昊,马浩,等.静电雾化机理及微量润滑铣削7075铝合金表面质量评价[J].表面技术,2023,52(6):337-350. WU Xifeng,XU Wenhao,MA Hao,et al. Mechanism of electrostatic atomization and surface quality evaluation of 7075 aluminum alloy under electrostatic minimum quantity lubrication milling[J]. Surface Technology,2023,52(6),337-350. [143] ZHANG X T,LI C H,ZHOU Z M,et al. Vegetable oil-based nanolubricants in machining:From physicochemical properties to application[J]. Chinese Journal of Mechanical Engineering,2023,36(1):76. [144] LIU M Z,LI C H,YANG M,et al. Mechanism and enhanced grindability of cryogenic air combined with biolubricant grinding titanium alloy[J]. Tribology International,2023,187:108704. [145] 许文昊,李长河,张彦彬,等.静电雾化微量润滑研究进展与应用[J].机械工程学报,2023,59(7):110-138. XU Wenhao,LI Changhe,ZHANG Yanbin,et al. Research progress and application of electrostatic atomization minimum quantity lubrication[J]. Journal of Mechanical Engineering,2023,59(7):110-138. [146] QU S S,GONG Y D,YANG Y Y,et al. Investigating minimum quantity lubrication in unidirectional Cf/SiC composite grinding[J]. Ceramics International,2020,46(3):3582-3591. [147] QU S S,GONG Y D,YANG Y Y,et al. An investigation of carbon nanofluid minimum quantity lubrication for grinding unidirectional carbon fibre-reinforced ceramic matrix composites[J]. Journal of Cleaner Production,2020,249:119353. |
[1] | 葛佳, 傅国宇, 邹云鹤, 罗明. 碳纤维增经强树脂基复合材料特种加工综述[J]. 机械工程学报, 2025, 61(7): 77-97. |
[2] | 周云光, 陈晗, 邹忌, 马文敏, 马廉洁, 李明, 尹国强, 巩亚东. 2.5D-Cf/SiC复合材料超声椭圆振动辅助螺旋磨削运动学模型及材料去除机理研究[J]. 机械工程学报, 2025, 61(7): 229-244. |
[3] | 石文天, 杨益琳, 李杰, 李建, 解钏, 马通. 基于微量润滑的芳纶复合材料铣磨复合加工对比试验研究[J]. 机械工程学报, 2025, 61(7): 259-268. |
[4] | 程军, 朱煜龙, 汪步云, 梁艺, 许德章, 刘蒙蒙, 刘有余. 基于改进迁移学习的CFRP缺陷涡流检测与识别[J]. 机械工程学报, 2025, 61(6): 53-65. |
[5] | 岳松洁, 程凯, 白清顺, 丁辉, 赵亮, 高思煜. 基于超精密磨削耦合效应的空气静压主轴设计分析方法与试验验证[J]. 机械工程学报, 2025, 61(5): 40-49. |
[6] | 孟庆宇, 孟变变, 郭兵, 郭振飞, 吴贵成, 李川渠, 赵清亮. 基于微结构化工具的大长径比微齿内螺纹精密磨削技术研究[J]. 机械工程学报, 2025, 61(5): 330-342. |
[7] | 党嘉强, 安庆龙, 李宇罡, 明伟伟, 王浩伟, 刘忠明, 陈明. 航空齿轮齿根磨削和超声滚压表面完整性分布规律研究[J]. 机械工程学报, 2025, 61(5): 343-353. |
[8] | 张宏伟, 罗忠, 许春阳, 常晶, 姚思博. 静叶调节机构间隙转动关节接触力模型及实验[J]. 机械工程学报, 2025, 61(1): 1-12. |
[9] | 苏志朋, 梁志强, 李娟, 王飞, 魏正义, 刘月红, 金惟薇, 马悦, 殷振, 王西彬. 钛合金微槽超声螺线辅助铣磨加工试验研究[J]. 机械工程学报, 2024, 60(9): 5-12. |
[10] | 武韩强, 陈卓, 叶曦珉, 张诗博, 李偲偲, 曾江, 汪强, 吴勇波. 钛合金超声辅助等离子体氧化改性磨削基本加工特性研究[J]. 机械工程学报, 2024, 60(9): 13-25. |
[11] | 董志刚, 王中旺, 冉乙川, 鲍岩, 康仁科. 碳纤维增强陶瓷基复合材料超声振动辅助铣削加工技术的研究进展[J]. 机械工程学报, 2024, 60(9): 26-56. |
[12] | 殷振, 张坤, 戴晨伟, 程敬彩, 徐海龙, 李华. 超声椭圆振动磨削SiC陶瓷的砂轮磨损与磨削性能研究[J]. 机械工程学报, 2024, 60(9): 57-74. |
[13] | 梁奉爽, 吴明阳, 刘立飞. 基于材料冲击特性的碳化硅超声磨削机理及亚表面损伤特征研究[J]. 机械工程学报, 2024, 60(9): 75-85. |
[14] | 肖贵坚, 刘振扬, 贺毅, 刘岗, 邓忠才. 激光辅助CBN砂带磨削TC4钛合金材料去除行为及表面完整性研究[J]. 机械工程学报, 2024, 60(9): 241-253. |
[15] | 王晓铭, 李长河, 杨敏, 张彦彬, 刘明政, 高腾, 崔歆, 王大中, 曹华军, 陈云, 刘波. 纳米生物润滑剂微量润滑加工物理机制研究进展[J]. 机械工程学报, 2024, 60(9): 286-322. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||