• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (7): 421-430.doi: 10.3901/JME.2025.07.421

• 机械动力学 • 上一篇    

扫码分享

径向被动永磁轴承承载特性及实验研究

程文杰1, 王瑜琛1, 卜婵1, 肖玲1, 冯圣2, 徐国徽3   

  1. 1. 西安科技大学理学院 西安 710054;
    2. 西安交通大学机械工程学院 西安 710049;
    3. 青岛港董家口石油仓储有限公司 青岛 266409
  • 收稿日期:2024-04-29 修回日期:2024-10-21 发布日期:2025-05-12
  • 作者简介:程文杰(通信作者),男,1982年出生,博士,副教授。主要研究方向为高速永磁电机设计。E-mail:cwj20070807@163.com
    王瑜琛,男,1999年出生,硕士研究生。主要研究方向为分布式磁齿轮复合电机。E-mail:1360430149@qq.com卜婵,男,1996年出生,硕士研究生。主要研究方向为永磁-滑动混合轴承。E-mail:879926738@qq.com
    肖玲,女,1983年出生,博士,教授。主要研究方向为软磁复合材料、电磁轴承。E-mail:xiaoling@xust.edu.cn
    冯圣,男,1983年出生,副研究员。主要研究方向为高速转子结构强度及转子动力学研究。E-mail:371868218@qq.com
    徐国徽,男,1983年出生,工程师。主要研究方向为旋转机械动力学、设备安全管理工作。E-mail:xuguohui1983@126.com
  • 基金资助:
    陕西省自然科学基金(2022JM-194)和国家自然科学基金(52275271,6110119004)资助项目。

Load Bearing Characteristics and Experimental Research of Passive Permanent Magnet Radial Bearings

CHENG Wenjie1, WANG Yuchen1, BU Chan1, XIAO Ling1, FENG Sheng2, XU Guohui3   

  1. 1. College of Science, Xi'an University of Science and Technology, Xi'an 710054;
    2. School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049;
    3. Qingdao Port Dongjiakou Petroleum Storage Co., Ltd., Qingdao 266409
  • Received:2024-04-29 Revised:2024-10-21 Published:2025-05-12

摘要: 径向被动永磁轴承在轴向方向并不稳定,导致装配困难。另外,由于材料和充磁原因,实际永磁体的磁场一般低于理论值,使得这类轴承的刚度计算存在误差。为了解决上述问题,以轴向充磁斥力型径向轴承为研究对象,首先采用等效磁荷理论建立轴承数学模型,计算获得装配过程中的轴向磁力和轴向刚度,径向磁力和径向刚度。然后引入球铰,建立单跨转子静力学模型,求解出装配完成后两个轴承的载荷分配量和对应径向刚度(水平刚度、竖直刚度)。最后,搭建了实验台,测量了轴向磁力、轴向刚度和径向刚度,并实现了转子的完全悬浮。理论计算和有限元仿真结果吻合,计算表明1.5 kg的永磁体,理论上能产生最大1 368 N的轴向磁力和700 N的径向磁力。实验结果表明:由于充磁不足,最大轴向力降低至1 028 N;实验轴承能完全悬浮18 kg的转子,测量的轴、径向刚度数量级分别在105N/m和104N/m。研究工作为后续永磁-滑动轴承的承载特性和动力学特性研究提供了理论依据。

关键词: 永磁轴承, 承载特性, 刚度, 等效磁荷理论

Abstract: The radial passive permanent magnet bearing is not stable in the axial direction, resulting in difficulty in assembly. In addition, due to material and magnetization reasons, the actual magnetic field of permanent magnets is generally lower than the theoretical value, resulting in errors in the stiffness calculation of such bearings. In order to solve the above problems, the axially magnetized repulsive radial bearing is taken as the research object. Firstly, a mathematical model of the bearing is established using the equivalent magnetic charge theory, and the axial magnetic force and axial stiffness during the assembly process, as well as the radial magnetic force and radial stiffness, are calculated. Then, a ball joint is introduced to establish a single span rotor static model, and the load distribution and corresponding radial stiffness (horizontal stiffness and vertical stiffness) of the two bearings after assembly are solved. Finally, an experimental platform is built to measure axial magnetic force, axial stiffness, and radial stiffness, and complete suspension of the rotor is achieved. The theoretical calculation and finite element simulation results are consistent, indicating that a 1.5 kg permanent magnet can theoretically generate a maximum axial magnetic force of 1 368 N and a radial magnetic force of 700 N. The experimental results show that due to insufficient magnetization, the maximum axial force decreases to 1 028 N; The experimental bearing can completely suspend an 18 kg rotor, and the measured axial and radial stiffness orders of magnitude are 105N/m and 104N/m, respectively. The research work provides a theoretical basis for the subsequent research on the load-bearing and dynamic characteristics of permanent magnet sliding bearings.

Key words: permanent magnet bearings, load-bearing characteristics, stiffness, equivalent magnetic charge theory

中图分类号: