• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (7): 325-337.doi: 10.3901/JME.2025.07.325

• 机器人及机构学 • 上一篇    下一篇

扫码分享

协作SCARA机器人关节综合动态摩擦辨识与补偿

汪朋朋1, 卢浩2, 杨志强1, 侯福宁1, 郭士杰1,3, 甘中学1   

  1. 1. 复旦大学工程与应用技术研究院 上海 200433;
    2. 天津科技大学电子信息与自动化学院 天津 300457;
    3. 河北工业大学机械工程学院 天津 300401
  • 收稿日期:2024-04-04 修回日期:2024-08-15 发布日期:2025-05-12
  • 作者简介:汪朋朋,男,1991年出生,博士研究生。主要研究方向为智能机器人,护理机器人。E-mail:19110860051@fudan.edu.cn
    郭士杰(通信作者),男,1963年出生,教授,博士研究生导师。主要研究方向为智能护理机器人、柔性步行助力机器人、无束缚生理信息检测、机器人智能传感技术。E-mail:guoshijie@fudan.edu.cn
  • 基金资助:
    上海科技计划(21511101701)和国家重点研发计划(2021YFC0122704)资助项目。

Comprehensive Dynamic Friction Identification and Compensation in Joints of Collaborative SCARA Robots

WANG Pengpeng1, LU Hao2, YANG Zhiqiang1, HOU Funing1, GUO Shijie1,3, GAN Zhongxue1   

  1. 1. Academy for Engineering and Technology, Fudan University, Shanghai 200433;
    2. College of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin 300457;
    3. School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401
  • Received:2024-04-04 Revised:2024-08-15 Published:2025-05-12

摘要: 在协作机器人的动力学建模中,由于关节非线性摩擦力的存在,基于电机反馈电流的无力传感器力控精度不高。基于此,重点研究协作机器人关节非线性摩擦力,提高其辨识的精度,从而提升力矩控制性能。设计了一种新的协作SCARA机器人,对关节摩擦的组成进行了分析,并对影响摩擦的关节速度、温度和负载等因素进行了试验。通过采集机器人的位置、速度、力矩、环境温度和负载等时间序列数据,采用牛顿欧拉法计算理论力矩,将实际力矩作为监督学习的对象,建立基于Informer-LSTM的并联混合神经网络模型,从而辨识得出具有不同时间序列特征的非线性综合动态摩擦力,最终以前馈力矩的方式对关节摩擦进行补偿。实验结果表明,Informer-LSTM并联混合神经网络模型能够很好地预测长、短时间序列数据,以数据驱动的综合动态摩擦模型在零速和极低速下更为精确,摩擦补偿后的各关节力矩平均误差均在1%以下,能够显著提升力矩精度。

关键词: 协作SCARA机器人, 非线性摩擦力辨识, 摩擦补偿, 长短期记忆, Informer

Abstract: In the field of collaborative robot dynamics modeling, the presence of nonlinear friction forces at the joints results in low precision of force control based on motor feedback current. Against this backdrop, the research focuses on the nonlinear friction forces of collaborative robots to enhance the accuracy of their identification, thereby improving torque control performance. A new collaborative SCARA robot has been designed, analyzing the components of joint friction and conducting experiments on factors affecting friction, such as joint speed, temperature, and load. By collecting time series data of the robot’s position, speed, torque, ambient temperature, and load, the theoretical torque is calculated using the Newton-Euler method, the actual torque is used as the target for supervised learning to establish an Informer-LSTM-based parallel hybrid neural network model. This model identifies nonlinear composite dynamic friction forces with different time series characteristics, ultimately compensating for joint friction with feedforward torque. Experimental results show that the Informer-LSTM parallel hybrid neural network model can accurately predict long and short time series data. The data-driven comprehensive dynamic friction model is more precise at zero and very low speeds, with the average error in joint torque after friction compensation below 1%, significantly enhancing torque precision.

Key words: collaborative SCARA robot, nonlinear friction identification, friction compensation, long short-term memory, Informer

中图分类号: