[1] 向定汉,王春艳,董伟锋. 向心关节轴承的结构优化及摩擦磨损性能研究[J]. 摩擦学学报,2004(6):564-567. XIANG Dinghan,WANG Chunyan,DONG Weifeng. Study on structure optimization and friction and wear performance of spherical plain bearings[J]. Tribology,2004(6):564-567. [2] 王彻,杨丽颖,王守仁,等. 新型关节轴承材料的研究现状及展望[J]. 轴承,2018(10):62-66. WANG Che,YANG Liying,WANG Shouren,et al. The status and prospects of new joint bearing materials[J]. Journal of bearing,2018 (10):62-66. [3] YUAN Zewei,QIN Yue,CHENG Kai,et al. Investigation on surface morphology and tribological property generated by vibration assisted strengthening on aviation spherical plain bearings[J]. Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2019,233(12):4091-4101. [4] 李迎春,邱明,苗艳伟,等. 关节轴承喷涂MoS2/石墨复合涂层摩擦学性能的研究[J]. 现代制造工程,2015(6):22-26. LI Yingchun,QIU Ming,MIAO Yanwei,et al. Tribological Properties of sprayed MoS2/graphite composite coating on joint bearing[J]. Modern Manufacturing Engineering,2015(6):22-26. [5] 韩翠红,石佳东,刘云帆,等. 关节轴承自润滑材料摩擦学性能及轴承寿命预测研究现状[J]. 材料导报,2021,35(5):5166-5173. HAN Cuihong,SHI Jiadong,LIU Yunfan,et al. Research status on tribological properties of self-lubricating materials and bearing life prediction of plain bearing[J]. Journal of Materials Review,2021,35(5):5166-5173. [6] QIU Ming,LU Jianjun,LI Yingchun,et al. Investigation on MoS2 and graphite coatings and their effects on the tribological properties of the radial spherical plain bearings[J]. Chinese Journal of Mechanical Engineering,2016,29(4):844-852. [7] 牛荣军,汪静静,詹华,等. 关节轴承配副表面Cr DLC和WDLC薄膜摩擦学性能研究[J]. 农业机械学报,2020,51(S2):603-610. NIU Rongjun,WANG Jingjing,ZHAN Hua,et al. Tribological properties of Cr DLC and WDLC films on spherical plain bearing matching surfaces[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(S2):603-610. [8] XU Jiuping,WANG Yusheng,XU Lei. PHM-oriented integrated fusion prognostics for aircraft engines based on sensor data[J]. IEEE Sensors Journal,2013,14(4):1124-1132. [9] SCANFF E,FELDMAN K L,GHELAM S,et al. Life cycle cost impact of using prognostic health management (PHM) for helicopter avionics[J]. Microelectronics reliability,2007,47(12):1857-1864. [10] ZHANG Shen,ZHANG Shibo,WANG Binnan,et al. Deep learning algorithms for bearing fault diagnostics-a comprehensive review[J]. IEEE Access,2020,8:29857-29881. [11] HAMADACHE M,JUNG J H,PARK J,et al. A comprehensive review of artificial intelligence-based approaches for rolling element bearing PHM:shallow and deep learning[J]. JMST Advances,2019,1(1):125-151. [12] HOTAIT H,CHIEMENTIN X,RASOLOFONDRAIBE L. Intelligent online monitoring of rolling bearing:diagnosis and prognosis[J]. Entropy (Basel,Switzerland),2021,23(7):791-807. [13] GAO Songhao,XIONG Xin,ZHOU Yanfei,et al. Bearing remaining useful life prediction based on a scaled health indicator and a LSTM model with attention mechanism[J]. Machines,2021,9(10):238-264. [14] 卢建军,邱明,李迎春. 自润滑向心关节轴承磨损寿命模型[J]. 机械工程学报,2015,51(11):56-63. LU Jianjun,QIU Ming,LI Yingchun. Wear life model of self-lubricating spherical plain bearings[J]. Journal of mechanical engineering,2015,51(11):56-63. [15] LIU Yunfan,MA Guozheng,ZHU Lina,et al. Structure-performance evolution mechanism of the wear failure process of coated spherical plain bearings[J]. Engineering Failure Analysis,2022,135:106097. [16] 郑近德,潘海洋,程军圣,等. 基于自适应经验傅里叶分解的机械故障诊断方法[J]. 机械工程学报,2020,56(9):125-136. ZHENG Jinde,PAN Haiyang,CHENG Junsheng,et al. Mechanical fault diagnosis method based on adaptive empirical Fourier decomposition[J]. Chinese journal of mechanical engineering,2020,56(9):125-136. [17] LU Chuanqi,WANG Shaoping,MAKIS V. Fault severity recognition of aviation piston pump based on feature extraction of EEMD paving and optimized support vector regression model[J]. Aerospace Science and Technology,2017,67:105-117. [18] 王冉,后麒麟,石如玉,等. 基于变分模态分解与集成深度模型的锂电池剩余寿命预测方法[J]. 仪器仪表学报,2021,42(4):111-120. WANG Ran,HOU Qilin,SHI Ruyu,et al. Residual life prediction method of lithium battery based on variational mode decomposition and integration depth model[J]. Chinese Journal of Scientific Instrument,2021,42(4):111-120. [19] KONSTANTIN D,DOMINIQUE Z. Variational mode decomposition[J]. IEEE Trans. Signal Processing,2014,62(3):531-544. [20] LIU Yuanyuan,YANG Gongliu,LI Ming,et al. Variational mode decomposition denoising combined the detrended fluctuation analysis[J]. Signal Processing,2016,125:349-364. [21] 马军岩,袁逸萍,柴同,等. 基于组合神经网络的风机轮毂处短期风速预测[J]. 中国机械工程,2021,32(17):2082-2089. MA Junyan,YUAN Yiping,CHAI Tong,et al. Short-term wind speed prediction at fan hub based on combinational neural network. China Mechanical Engineering,2021,32(17):2082-2089. [22] WANG Y,YEH C,YOUNG V H,et al. On the computational complexity of the empirical mode decomposition algorithm[J]. Physica A:Statistical Mechanics and its Applications,2014,400:159-167. [23] 姚德臣,杨建伟,程晓卿,等. 基于多尺度本征模态排列熵和SA-SVM的轴承故障诊断研究[J]. 机械工程学报,2018,54(9):168-176. YAO Dechen,YANG Jianwei,CHENG Xiaoqing,et al. Bearing fault diagnosis based on multi-scale eigenmode permutation entropy and SA-SVM[J]. Journal of Mechanical Engineering,2018,54(9):168-176. [24] WU Zhaohua,NORDEN E H. Ensemble empirical mode decomposition:a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis,2009,1(1):1-41. [25] 张楷,罗怡澜,邹益胜,等. 高速列车的样本关联改进故障诊断方法[J]. 中国机械工程,2018,29(2):151-157. ZHANG Kai,LUO Yilan,ZOU Yisheng,et al. Sample correlation improved fault diagnosis method for high-speed trains[J]. China Mechanical Engineering,2018,29(2):151-157. [26] ZHANG Meijun,TANG Jian,ZHANG Xiaoming,et al. Intelligent diagnosis of short hydraulic signal based on improved EEMD and SVM with few low-dimensional training samples[J]. Chinese Journal of Mechanical Engineering,2016,29(2):396-405. [27] LI Xiang,ZHANG Wei,QIAN Ding. Deep learning-based remaining useful life estimation of bearings using multi-scale feature extraction[J]. Reliability Engineering and System Safety,2019,182:208-218. [28] PRADEEP K,ASHISH K. D,MAKARAND S. K. Weibull accelerated failure time regression model for remaining useful life prediction of bearing working under multiple operating conditions[J]. Mechanical Systems and Signal Processing,2019,134:106302. [29] MA Meng,MAO Zhu. Deep-convolution-based LSTM network for remaining useful life prediction[J]. IEEE Transactions on Industrial Informatics,2020,17(3):1658-1667. [30] VLACHAS P R,BYEON W,WAN Z Y,et al. Data-driven forecasting of high-dimensional chaotic systems with long short-term memory networks[J]. Proceedings. Mathematical,physical,and engineering sciences,2018,474:(2213). [31] KAMTA N M,SUBHASH C P. Fraud prediction in smart societies using logistic regression and k-fold machine learning techniques[J]. Wireless Personal Communications,2021,119(2):1341-1367. [32] 石怀涛,尚亚俊,白晓天,等. 基于贝叶斯优化的SWDAE-LSTM滚动轴承早期故障预测方法研究[J]. 振动与冲击,2021,40(18):286-297. SHI Huaitao,SHANG Yajun,BAI Xiaotian,et al. Research on early fault prediction method of SWDAE-LSTM rolling bearing based on Bayesian optimization[J]. Journal of Vibration and Shock,2021,40(18):286-297. [33] 李鹏,冯存前,许旭光,等. 一种利用贝叶斯优化的弹道目标微动分类网络[J]. 西安电子科技大学学报,2021,48(5):139-148. LI Peng,FENG Cunqian,XU Xuguang,et al. A trajectory target fretting classification network based on Bayesian optimization[J]. Journal of Xidian University,2021,48(5):139-148. [34] 叶楠,常佩泽,张露予,等. 基于改进后半监督深度信念网络的多工况轴承故障诊断研究[J]. 机械工程学报,2021,57(15):80-90. YE Nan,CHANG Peize,ZHANG Luyu,et al. Research on multi-condition bearing fault diagnosis based on improved semi-supervised deep belief network[J]. Journal of Mechanical Engineering,2021,57(15):80-90. [35] 古乐,聂重阳,郑德志,等. 空间环境回转-直线往复复合运动密珠轴系力载特性分析[J]. 机械工程学报,2016,52(7):88-96. GU Le,NIE Chongyang,ZHENG Dezhi,et al. Analysis of force load characteristics of dense bead shafting in space environment with rotary and linear reciprocating compound motion[J]. Journal of mechanical engineering,2016,52(7):88-96 [36] LIU Yunfan,MA Guozheng,QIN Hongling,et al. Research on damage and failure behaviour of coated self-lubricating spherical plain bearings based on detection of friction torque and temperature rise[J]. Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology,2022,236(3). [37] TANG Yu,KAN Zhigang,YIN Lujia,et al. Increasing momentum-like factors:a method for reducing training errors on multiple GPUs[J]. Tsinghua Science and Technology,2022,27(1):114-126. |