[1] 马萍,张宏立,范文慧. 基于局部与全局结构保持算法的滚动轴承故障诊断[J]. 机械工程学报,2017,53(2):20-25. MA Ping,ZHANG Hongli,FAN Wenhui. Fault diagnosis of rolling bearings based on local and global preserving embedding algorithm[J]. Journal of Mechanical Engineering,2017,53(2):20-25. [2] 张云强,张培林,王怀光,等. 基于双时域微弱故障特征增强的轴承早期故障智能识别[J]. 机械工程学报,2016,52(21):96-103. ZHANG Yunqiang,ZHANG Peilin,WANG Huaiguang,et al. Rolling bearing early fault intelligence recognition based on weak fault feature enhancement in time-time domain[J]. Journal of Mechanical Engineering,2016,52(21):96-103. [3] GABOR D. Theory of communication[J]. Journal of the Institution of Electrical Engine,1946,93(6):429-457. [4] STAZEWSKI W J,TOMLINSON G R. Application of the wavelet transform to fault detection in a spur gear[J]. Mechanical Systems and Signal Processing,1994,8(3):289-307. [5] HUANG N E,SHEN Z,LONG S R,et al. The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Mathematical,Physical and Engineering Sciences,1998,454(1971):903-995. [6] SMITH J S. The local mean decomposition and its application to EEG perception data[J]. Journal of the Royal Society Interface,2005,2(5):443-454. [7] COIFMAN R R,WICKERHAUSER M V. Entropy-based algorithms for best basis selection[J]. IEEE Transactions on Information Theory,1992,38(2):713-718. [8] 杨斌,刘桂明,刘建友.基于标准互相关函数的经验模态分解端点效应处理方法[J]. 机械工程学报,2013,49(5):63-68. YANG Bin,LIU Guiming,LIU Jianyou. Method of empirical mode decomposition end effect based on standardized cross-correlation function[J]. Journal of Mechanical Engineering,2013,49(5):63-68. [9] 程军圣,张亢,杨宇,等. 局部均值分解与经验模式分解的对比研究[J]. 振动与冲击,2009,28(5):13-16. CHENG Junsheng,ZHANG Kang,YANG Yu,et al. Comparison between the methods of local mean decomposition and empirical mode decomposition[J]. Journal of Vibration and Shock,2009,28(5):13-16. [10] DRAGOMIRETSKIY K,ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing,2014,62(3):531-544. [11] 唐贵基,王晓龙. 参数优化变分模态分解方法在滚动轴承早期故障诊断中的应用[J]. 西安交通大学学报,2015,49(5):73-81. TANG Guiji,WANG Xiaolong. Parameter optimized variational mode decomposition method with application to incipient fault diagnosis of rolling bearing[J]. Journal of Xi'an Jiaotong University,2015,49(5):73-81. [12] 刘长良,武英杰,甄成刚. 基于变分模态分解和模糊C均值聚类的滚动轴承故障诊断[J]. 中国电机工程学报,2015,35(13):3358-3365. LIU Changliang,WU Yingjie,ZHEN Chenggang. Rolling bearing fault diagnosis based on variational mode decomposition and fuzzy C means clustering[J]. Proceedings of the CSEE,2015,35(13):3358-3365. [13] 武英杰,甄成刚,刘长良. 变分模态分解在风电机组故障诊断中的应用[J]. 机械传动,2015,39(10):129-132. WU Yingjie,ZHEN Chenggang,LIU Changliang. Application of variational mode decomposition in wind power fault diagnosis[J]. Journal of Mechanical,2015,39(10):129-132. [14] 马增强,李亚超,刘政,等. 基于变分模态分解和Teager能量算子的滚动轴承故障特征提取[J]. 振动与冲击,2016,35(13):134-139. MA Zengqiang,LI Yachao,LIU Zheng,et al. Rolling bearings' fault feature extraction based on variational mode decomposition and Teager energy operator[J]. Journal of Vibration and Shock,2016,35(13):134-139. [15] CANALES D P,RAMIREZ J A,CARLOS J,et al. Identification of dynamic instabilities in machining process using the approximate entropy method[J]. International Journal of Machine Tools and Manufacture,2011,51(6):556-564. [16] AKTARUZZAMAN M,SASSI R. Parametric estimation of sample entropy in heart rate variability analysis[J]. Biomedical Signal Processing and Control,2014,14:141-147. [17] BANDT C,POMPE B. Permutation entropy:a natural complexity measure for time series[J]. Physical Review Letters,2002,88(17):174102. [18] AZIZ W,ARIF M. Multiscale permutation entropy of physiological times series[C]//IEEE INMIC International Multi-topic Conference,December 24-25,2005,Karachi,Pakistan. IEEE,2007:1-6. [19] 郑近德,程军圣,杨宇. 多尺度排列熵及其在滚动轴承故障诊断中的应用[J]. 中国机械工程,2013,24(19):2641-2645. ZHENG Jinde,CHENG Junsheng,YANG Yu. Multi-scale permutation entropy and its applications to rolling bearing fault diagnosis[J]. China Mechanical Engineering,2013,24(19):2641-2645. [20] 王余奎,李洪儒,叶鹏. 基于多尺度排列熵的液压泵故障识别[J]. 中国机械工程,2015,26(4):518-523. WANG Yukui,LI Hongru,YE Peng. Fault identification of hydraulic pump based on multi-scale permutation entropy[J]. China Mechanical Engineering,2015,26(4):518-523. [21] 饶国强,冯辅周,司爱威,等. 排列熵算法参数的优化确定方法研究[J]. 振动与冲击,2014,33(1):188-193. RAO Guoqiang,FENG Fuzhou,SI Aiwei,et al. Method for optimal determination of parameters in permutation entropy algorithm[J]. Journal of Vibration and Shock,2014,33(1):188-193. [22] DAVARI A,MARHABAN M H,NOOR S B M,et al. Parameter estimation of K-distributed sea clutter based on fuzzy inference and Gustafson-Kessel clustering[J]. Fuzzy Sets and Systems,2010,163(1):45-53. [23] 王书涛,李亮,张淑清,等. 基于EEMD样本熵和GK模糊聚类的机械故障识别[J]. 中国机械工程,2013,24(22):3036-3044. WANG Shutao,LI Liang,ZHANG Shuqing,et al. Mechanical fault diagnosis method based on EEMD sample entropy and GK fuzzy clustering[J]. China Mechanical Engineering,2013,24(22):3036-3040. [24] 杨志超,范立新,杨成顺,等. 基于GK模糊聚类和LS-SVC的GIS局部放电类型识别[J]. 电力系统保护与控制,2014,42(20):38-45. YANG Zhichao,FAN Lixin,YANG Chengshun,et al. Identification of partial discharge in gas insulated switchgears based on GK fuzzy clustering and LS-SVM[J]. Power System Protection and Control,2014,42(20):38-45. [25] BECK A,TEBOULLE M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM Journal on Imaging Sciences,2009,2(1):183-202. [26] 陈东宁,张瑞星,姚成玉,等. 求解液压阀块加工车间调度的多作用力微粒群算法[J]. 中国机械工程,2015,26(3):369-378. CHEN Dongning,ZHANG Ruixing,YAO Chengyu,et al. A MFPSO algorithm for solving hydraulic manifold processing shop scheduling[J]. China Mechanical Engineering,2015,26(3):369-378. [27] 张龙,黄文艺,熊国良. 基于多尺度熵的滚动轴承故障程度评估[J]. 振动与冲击,2014,33(9):185-189. ZHANG Long,HUANG Wenyin,XIONG Guoliang. Assessment of rolling element bearing fault severity using multi-scale entropy[J]. Journal of Vibration and Shock,2014,33(9):185-189. [28] KONONENKO I. Estimating attributes:analysis and extensions of Relief[C]//European Conference on Machine Learning,April 6-8, 1994,Catania,Italy. Berlin:Springer,1994:171-182. [29] 李洁,高新波,焦李成. 基于特征加权的模糊聚类新算法[J]. 电子学报,2006,1(1):89-92. LI Jie,GAO Xinbo,JIAO Licheng. A new feature weighted fuzzy clustering algorithm[J]. Acta Electronica Sinica,2006,1(1):89-92. |