[1] JENETT B,CALISCH S,CELLUCCI D,et al. Digital morphing wing:Active wing shaping concept using composite lattice-based cellular structures[J]. Soft Robotics,2017,4(1):33-48. [2] KOREANSCHI A,GABOR O S,ACOTTO J,et al. Optimization and design of an aircraft's morphing wing-tip demonstrator for drag reduction at low speed,Part I-Aerodynamic optimization using genetic,bee colony and gradient descent algorithms[J]. Chinese Journal of Aeronautics,2017,30(1):149-163. [3] KOREANSCHI A,GABOR O S,ACOTTO J,et al. Optimization and design of an aircraft's morphing wing-tip demonstrator for drag reduction at low speeds,Part Ⅱ-Experimental validation using Infra-Red transition measurement from Wind Tunnel tests[J]. Chinese Journal of Aeronautics,2017,30(1):164-174. [4] LUCA M D,MINTCHEV S,HEITZ G,et al. Bioinspired morphing wings for extended flight envelope and roll control of small drones[J]. Interface Focus,2017,7:20160092. [5] MEGUID S A,SU Y,WANG Y. Complete morphing wing design using flexible-rib system[J]. Int. J. Mech. Mater. Des.,2017,13:159-171. [6] BARBARINO S,BILGEN O,AJAJ R M,et al. A review of morphing aircraft[J]. Journal of Intelligent Material Systems and Structures,2011,22:823-877. [7] GAO L,LI C,JIN H,et al. Aerodynamic characteristics of a novel catapult launched morphing tandem-wing unmanned aerial vehicle[J]. Advances in Mechanical Engineering,2017,9(2):1-15. [8] THILL C,ETCHES J,BOND I,et al. Morphing skins[J]. The Aeronautical Journal,2008,112(1129):117-139. [9] SOFLA A Y N,MEGUID S A,TAN K T,et al. Shape morphing of aircraft wing:Status and challenges[J]. Materials and Design,2010,31:1284-1292. [10] KAMMEGNE M J T,BOTEZ R M,GRIGORIE L T,et al. Proportional fuzzy feed-forward architecture control validation by wind tunnel tests of a morphing wing[J]. Chinese Journal of Aeronautics,2017,30(2):561-576. [11] PREVITALI F,MOLINARI G,ARRIETA A F,et al. Design and experimental characterization of a morphing wing with enhanced corrugated skin[J]. Intelligent Material Systems and Structures,2016,27(2):278-292. [12] BUDARAPU P R,SUDHIR Y B,NATARAJAN R. Design concepts of an aircraft wing:Composite and morphing airfoil with auxetic structures[J]. Front Struct. Civ. Eng.,2016,10(4):394-408. [13] KOREANSCHI A,SUGAR-GABOR O,BOTEZ R M. Drag optimization of a wing equipped with a morphing upper surface[J]. The Aeronautical Journal,2016,120(1225):473-493. [14] HIERONYMUS T L. Flight feather attachment in rock pigeons (Columba livia):Covert feathers and smooth muscle coordinate a morphing wing[J]. Journal of Anatomy,2016,229:631-656. [15] TAKAHASHI H,YOKOZEKI T,HIRANO Y. Development of variable camber wing with morphing leading and trailing sections using corrugated structures[J]. Intelligent Material Systems and Structures,2016,27(20):2827-2836. [16] SUN J,GUAN Q,LIU Y,et al. Morphing aircraft based on smart materials and structures:A state-of-the-art review[J]. Intelligent Material Systems and Structures,2016,27(17):2289-2312. [17] SU W,SWEI S S M,ZHU G G. Optimum wing shape of highly flexible morphing aircraft for improved flight performance[J]. Journal of Aircraft,2016,53(5):2289-2312. [18] AJAJ R M,FRISWELL M I,BOURCHAK M,et al. Span morphing using the GNATSpar wing[J]. Aerospace Science and Technology,2016,53:38-46. [19] ISMAIL N,ZULKIFLI A,TALIB R J,et al. Vortex structure on twist-morphing micro air vehicle wings[J]. Micro Air Vehicles,2016,8(3):194-205. [20] SHI R,SONG J,WAN W. Active disturbance rejection control system for a morphing wing structure[J]. Asian Journal of Control,2015,17(3):832-841. [21] GUAN Z,YU Y. Aerodynamics and mechanisms of elementary morphing models for flapping wing in forward flight of bat[J]. Appl. Math. Mech. Engl. Ed.,2015,36(5):669-680. [22] VIGLIOTTI A,PASINI D. Analysis and design of lattice materials for large cord and curvature variations in skin panels of morphing wings[J]. Smart Mater Struct.,2015,24:037006. [23] DAYNES S,LACHENAL X,WEAVER P M. Concept for morphing airfoil with zero torsional stiffness[J]. Thin-Walled Structures,2015,94:129-134. [24] ZHANG P,ZHOU L,CHENG W J,et al. Conceptual design and experimental demonstration of a distributedly actuated morphing wing[J]. Journal of Aircraft,2015,52(2):452-461. [25] ALMEIDA T C,SANTOS O,OTUBO J. Construction of a morphing wing rib actuated by a NiTi wire[J]. J Aerosp Technol Manag,2015,52(2):452-461. [26] WU R,SUN J,CHANG Z,et al. Elastic composite skin for a pure shear morphing wing structures[J]. Journal of Intelligent Material Systems and Structures,2015,26(3):352-363. [27] MURUGAN S,WOODS B K S,FRISWELL M I. Hierarchical modeling and optimization of camber morphing airfoil[J]. Aerospace Science and Technology,2015,42:31-38. [28] GASPARI A D,RICCI S. Knowledge-based shape optimization of morphing wing for more efficient aircraft[J]. International Journal of Aerospace Engineering,2015,325724:1-19. [29] RIM M,KIM E H,KANG W R. Development of a shape memory alloy wire actuator to operate a morphing wing[J]. Journal of Theoretical and Applied Mechanics,2014,52(2):519-531. [30] BASAERI H,KOMA A Y,ZAKERZADEH M R,et al. Experimental study of a bio-inspired robotic morphing wing mechanism actuated by shape memory alloy wires[J]. Mechatronics,2014,24:1231-1241. [31] PECORA R. Multi-parametric flutter analysis of a morphing wing trailing edge[J]. The Aeronautical Journal,2014,118(1207):1063-1078. [32] DETRICK M,WASHINGTON G. Modeling and design of a morphing wing for micro unmanned aerial vehicles via active twist[C]//Proceeding of 48th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics and Materials Conference,Palm Springs,Hawaii,2007:1788. [33] BARTLEY J D,WANG D P,MARTIN C A. Development of high-rate,adaptive trailing edge control surface for the smart wing phase 2 wind tunnel model[J]. Journal of Intelligent Material Systems and Structures,2004,15:279-291. [34] MANZO J,GARCIA E,WICKENHEISER A,et al. Design of a shape-memory alloy actuated macro-scale morphing aircraft mechanism[J]. Proc. of SPIE,2005,5764:232-240. [35] NEAL D A,GOOD M G,JOHNSTON C O,et al. Design and wind-tunnel analysis of a fully adaptive aircraft configuration[C]//Proceeding of 45th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics and Materials Conference,Palm Springs,California,2004:1727. [36] BLONDEAU J,RICHESON J,PINES D J. Design,development and testing of a morphing aspect ratio wing using an inflatable telescopic spar[C]//Proceeding of 44th AIAA/ASME/ASCE/AHS Structures,Structural Dynamics,and Materials Conference,Norfolk,Virginia,2003:1718. [37] JOO J J,SANDERS B,JOHNSON T,et al. Optimal actuator location within a morphing wing scissor mechanism configuration[C]//Smart Structures and Materials:Modeling,Signal Processing,and Control. Proc SPIE,2006,6166:616603-1. [38] BHARTI S,FRECKER M I,LESIEUTRE G,et al. Tendon actuated cellular mechanisms for morphing aircraft wing[C]//Modeling,Signal Processing,and Control for Smart Structures. Proc SPIE,2007,6523:652307-1. [39] ALEIXO P M M. Morphing aircraft structures design and testing an experimental UAV[D]. Portugal:Instituto Superior Tecnico,2007. [40] REED JR JL,HEMMELGARN C D,PELLEY B M,HAVENS E. Adaptive wing structures[C]//Smart Structures and Materials 2005:Industrial and Commercial Applications of Smart Structures Technologies. Proc SPIE,2005,5762:132-42. [41] 冷劲松. 智能材料和结构在变体飞行器上的应用现状与前景展望[J]. 航空学报,2014,35(1):29-45. LENG Jinsong. Application status and future prospect of smart materials and structures in morphing aircraft[J]. Acta Aeronautica et Astronautica Sinica,2014,35(1):29-45. [42] YU Y,LI X,ZHANG W,et al. Investigation on adaptive wing structure based on shape memory polymer composite hinge[C]//International Conference on Smart Materials and Nanotechnology in Engineering,China. Proc SPIE,2007,6423:64231D-5. [43] MATTIONI F,WEAVER P M,POTTER K D,et al. The application of thermally induced multistable composites to morphing aircraft structures[C]//Industrial and Commercial Applications of Smart Structures Technologies. Proc SPIE,2008,6930:693012. [44] 陈钱,白鹏,尹维龙,等. 飞机外翼段大尺度剪切式变后掠设计与分析[J]. 空气动力学学报,2012,31(1):40-46. CHEN Qian,BAI Peng,YIN Weilong,et al. Design and analysis of a variable-sweep morphing aircraft with outboard wing section large-scale shearing[J]. Acta Aerodynamica Sinica,2012,31(1):40-46. [45] 程春晓,李道春,向锦武,等. 柔性后缘可变形机翼气动特性分析[J]. 北京航空航天大学学报,2016,42(2):360-367. CHENG Chunxiao,LI Daochun,XIANG Jinwu,et al. Analysis on aerodynamic characteristics of morphing wing with flexible trailing edge[J]. Journal of Beijing University of Aeronautics and Astronautics,2016,42(2):360-367. [46] CAMPANILE L F,SACHAU D. The belt-rib concept:A structronic approach to variable camber[J]. J Intel Mater Syst Struct,2000,11:215-24. [47] KOTA S,LU K J,KREINER Z,et al. Design and application of compliant mechanisms for surgical tools[J]. Journal of Biomechanical Engineering,2005,127:981-989. [48] DIACONU C G,WEAVER P M,MATTIONI F. Concepts for morphing airfoil sections using bi-stable laminated composite structures[J]. Thin-Walled Struct,2008,46:689-701. [49] SOFLA A Y N,ELZEY D M,WADLEY H N G. An antagonistic flexural unit cell for design of shape morphing structures[C]//Proceedings of the ASME Aerospace Division:Adaptive Materials and Systems,Aerospace Materials and Structures,Anaheim,CA,2004,p261-9. [50] SOFLA A Y N,ELZEY D M,WADLEY H N G. Two-way antagonistic shape actuation based on the one-way shape memory effect[J]. J. Intel. Mater. Syst. Struct.,2008,19:1017-1027. [51] SOFLA A Y N,ELZEY D M,WADLEY H N G. Cyclic degradation of antagonistic shape memory actuated structures[J]. Smart Mater Struct,2008,17:025014. [52] WIGGINS L D,STUBBS M D,JOHNSTON C O,et al. A design and analysis of a morphing hyper-elliptic cambered span (HECS) wing[C]//Proceeding of 45th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics & Materials Conference,Palm Springs,California,2004. [53] MANZO J E. Analysis and design of a hyper-elliptical cambered span morphing aircraft[D]. Ithaca:Cornell University,2006. [54] MAJJI M. Robust control of redundantly actuated dynamical systems[D]. Texas:Texas A&M University,2006. [55] STANFORD B,ABDULRAHIM M,LIND R,et al. Investigation of membrane actuation for roll control of a micro air vehicle[J]. J Aircraft,2007,44:741-749. [56] BARRETT R. Active aeroelastic tailoring of an adaptive Flexspar stabilator[J]. Smart Mater. Struct.,1996,5:723-730. [57] AUSTIN F,ROSSI M J,NOSTRAND W V,et al. Static shape control for adaptive wings[J]. AIAA J,1994,32:1895-1901. [58] JOO J J,SANDERS B. Optimal location of distributed actuators within an in-plane multi-cell morphing mechanism[J]. J. Intel. Mater. Syst. Struct.,2009,20:481-492. [59] STRELEC J K,LAGOUDAS D C,KHAN M A,et al. Design and implementation of a shape memory alloy actuated reconfigurable airfoil[J]. J. Intel. Mater. Syst. Struct.,2003,14:257-273. [60] DONG Y,BOMING Z,JUN L. A changeable aerofoil actuated by shape memory alloy springs[J]. Mater. Sci. Eng. A,2008,485:243-50. [61] PINKERTON J L. A feasibility study to control airfoil shape using THUNDER[J]. NASA Technical Memorandum,4767,1997. [62] KIKUTA M T. Mechanical properties of candidate materials for morphing wings[D]. Virginia:Virginia Polytechnic Institute and State University,2003. [63] 孙健. 基于SMPC蒙皮和主动蜂窝结构的可变形机翼结构研究[D]. 哈尔滨:哈尔滨工业大学,2015. SUN Jian. Investigation on morphing wing structures based on shape memory polymer composite (SMPC) skins and active honeycomb structures[D]. Harbin:Harbin Institute of Technology. [64] MCKNIGHT G,DOTY R,KEEFE A,et al. Segmented reinforcement variable stiffness materials for reconfigurable surfaces[J]. Journal of Intelligent Material Systems and Structures,2010,21:1783-1793. [65] RAMRAKHYANI D S,LESIEUTRE G A,FRECKER M,et al. Aircraft structural morphing using tendon-actuated compliant cellular trusses[J]. J. Aircr.,2005,42(6):1615-1621. [66] 戚健龙,徐志伟,朱倩,等. 变体机翼大变形梯形蒙皮结构研究[J]. 功能材料,2011,42(1):108-111. QI Jianlong,XU Zhiwei,ZHU Qian,et al. Research on large-deformation trapezoidal skin structure of morphing wings[J]. Journal of functional materials,2011,42(1):108-111. [67] HAWKINS G,O'BRIEN M,ZALDIVAR R. Machine-Augmented Composites[C]//43rd AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference,2002,1240. [68] HERMANIS A,CACURS R,GREITANS M,et al. Acceleration and magnetic sensor network for shape sensing[J]. IEEE Sensors Journal,2016,16(5):1271-1280. [69] GUO J,LIU X,JIANG N,et al. Highly stretchable,strain sensing hydrogel optical fibers[J]. Advanced Materials,2016,28:10244-10249. [70] XU L,GE J,PATEL J H,et al. 3-Dimensional soft shape sensor based on dual-layer orthogonal fiber bragg grating mesh[C]//OFC,2017,Th3H.2. [71] XU T,WANG W,BIAN X,et al. High resolution skin-like sensor capable of sensing and visualizing various sensations and three dimensional shape[J]. Science Report,2015,5:12997. [72] SIM H J,CHOI C,KIM S H,et al. Stretchable triboelectric fiber for self-powered kinematic sensing textile[J]. Science Reports,2016,6:35153. [73] LARSON C,PEELE B,LI S,et al. Highly stretchable electroluminescent skin for optical signaling and tactile sensing[J]. Science,2016,351(6277):1071-1074. [74] PU X,LIU M,CHEN X,et al. Ultrastretchable,transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing[J]. Science advances,2017,3:1700015. [75] 沈元,昂海松,刘卫东. 用于变形机翼夹心式柔性伸缩蒙皮的梯形蜂窝支撑结构[J]. 复合材料学报,2015,32(3):815-822. SHEN Yuan,ANG Haisong,LIU Weidong. Trapezoidal cellular support structure applied to flexible telescopic sandwich skin of morphing wing[J]. Acta Materiae Compositae Sinica,2015,32(3):815-822. [76] 赵金涛. 用于机翼后缘变形的智能蒙皮及变形测量方法研究[D]. 南京:南京航空航天大学,2010. ZHAO Jintao. Research on smart wing skin for trailing edges morph and its deformation measurement method[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2010. [77] 于靖军,郝广波,陈贵敏,等. 柔性机构及其应用研究进展[J]. 机械工程学报,2015,51(13):53-68. YU Jingjun,HAO Guangbo,CHEN Guimin,et al. State-of-art compliant mechanisms and their application[J]. Journal of Mechanical Engineering,2015,51(13):53-68. [78] 郭闯强,吴春亚,刘宏. 离子聚合物金属复合材料驱动器在机器人中的应用进展[J]. 机械工程学报,2017,53(9):1-13. GUO Chuangqiang,WU Chunya,LIU Hong. Application progress of ionic polymer-metal composites actuator in robots[J]. Journal of Mechanical Engineering,2017,53(9):1-13. [79] 高仁璟,张莹,赵剑,等. 面向结构形状控制的压电纤维复合薄膜驱动器布局方式与控制参数协同优化设计[J]. 机械工程学报,2016,52(18):177-183. GAO Renjing,ZHANG Ying,ZHAO Jian,et al. Integrated design optimization of MFC-layout form and control parameters for morphing structural shapes[J]. Journal of Mechanical Engineering,2016,52(18):177-183. |