• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (7): 284-293.doi: 10.3901/JME.2025.07.284

• 机器人及机构学 • 上一篇    下一篇

扫码分享

基于快速终端滑模的并联式节能平台复合前馈稳定控制策略

杨少坤1,2, 王军政1,2, 沈伟1,2, 刘冬琛1,2, 林乾烨1,2   

  1. 1. 北京理工大学伺服运动系统驱动与控制工信部重点实验室 北京 100081;
    2. 北京理工大学自动化学院 北京 100081
  • 收稿日期:2024-05-25 修回日期:2024-12-26 发布日期:2025-05-12
  • 作者简介:杨少坤,男,2000年出生,硕士研究生。主要研究方向为机器人伺服运动驱动与控制。E-mail:yangsk975@163.com
    王军政(通信作者),男,1964年出生,博士,教授,博士研究生导师。主要研究方向为伺服运动驱动与控制、机器人控制和负载模拟与静动态试验。E-mail:wangjz@bit.edu.cn
  • 基金资助:
    国家自然科学基金(62173038,62303056)和中国博士后科学基金(2023M730249)资助项目。

Compound Feedforward Stable Control Strategy of Energy-saving Parallel Platform Based on Fast Terminal Sliding Mode Control

YANG Shaokun1,2, WANG Junzheng1,2, SHEN Wei1,2, LIU Dongchen1,2, LIN Qianye1,2   

  1. 1. Key Laboratory of Servo Motion System Drive and Control of the Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing 100081;
    2. School of Automation, Beijing Institute of Technology, Beijing 100081
  • Received:2024-05-25 Revised:2024-12-26 Published:2025-05-12

摘要: 针对并联式三自由度稳定平台姿态稳定控制的系统非线性、外部姿态扰动及系统滞后等问题,提出一种结合快速终端滑模控制(Fast terminal sliding mode control, FTSMC)与复合前馈控制的平台稳定控制策略。快速终端滑模控制方法提高电动缸位置跟踪时的抗扰动能力及跟踪精度,复合前馈控制策略在平台运动学模型反馈控制基础上引入了前馈控制策略,可有效提高系统的响应速度,补偿平台检测环境扰动及稳定控制等环节引起的滞后。针对高负载工作时高能耗的问题引入了气平衡结构,提高平台负载能力,节约能源,并在滑模控制策略中对气缸扰动进行相应补偿。提出的控制策略进行了仿真及实物平台验证,结果表明提出的控制策略最高环境扰动衰减量可达92.1%,且具有更高的响应速度及稳定控制精度,气平衡结构节能效率最高达到38.8%。

关键词: 并联式稳定平台, 滑模控制, 前馈控制, 姿态稳定, 节能

Abstract: A control strategy is proposed to address issues such as nonlinearity, external attitude disturbances, and system lag in the attitude stability control of parallel three-degree-of-freedom stabilizing platforms. This strategy combines fast terminal sliding mode control (FTSMC) with composite feedforward control. The FTSMC method enhances disturbance rejection capability and tracking accuracy during electric cylinder position tracking, while the composite feedforward control strategy introduces feedforward control on the basis of feedback control of the platform's kinematic model, effectively improving system response speed and compensating for lag caused by platform detection environment disturbances and stability control. To address the high energy consumption issue during high-load operation, an air balance structure is introduced to enhance platform load capacity, save energy, and compensate for air cylinder disturbances in the sliding mode control strategy. The proposed control strategy is validated through simulation and physical platform experiments. The results indicate that the proposed control strategy achieves a maximum attenuation of environmental disturbances up to 92.1% and demonstrates higher response speed and stability control accuracy. The energy-saving efficiency of the air balance structure reaches up to 38.8%.

Key words: stability platform, sliding mode control, feedforward, attitude stabilization, energy saving

中图分类号: