机械工程学报 ›› 2025, Vol. 61 ›› Issue (22): 109-132.doi: 10.3901/JME.2025.22.109
• 运载工程 • 上一篇
熊瑞, 朱宇华, 张骞慧, 张奎, 梅冰昂, 孙逢春
收稿日期:2024-10-20
修回日期:2025-06-23
发布日期:2026-01-10
作者简介:熊瑞(通信作者),男,1985年出生,教授,博士研究生导师。主要研究方向为电池管理与控制。E-mail:rxiong@bit.edu.cn基金资助:XIONG Rui, ZHU Yuhua, ZHANG Qianhui, ZHANG Kui, MEI Bingang, SUN Fengchun
Received:2024-10-20
Revised:2025-06-23
Published:2026-01-10
摘要: 以电动汽车为代表的新能源汽车迎来了前所未有的发展机遇。锂离子电池凭借高比能、低自放电率及长寿命等优点,成为电动汽车动力系统的主流选择。然而,低温下锂离子电池性能显著下降,直接导致电动汽车续航里程缩短,充电时间延长,还可能引发安全隐患,是电动汽车推广的一个核心难题。低温加热作为克服电池低温性能瓶颈的关键方法之一,是当前业界攻关的重点。对锂离子电池低温加热技术最新进展及实车应用现状进行了全面的总结和讨论,涵盖外部加热、内部加热和复合加热三类。全面阐述每种技术的原理、最新进展、优势劣势及潜在的优化空间。此外,对每种技术进行定性比较,并分析当前加热技术在实车上的应用现状。最后,探讨低温加热技术的未来发展前景,聚焦于关键技术突破与机遇,为低温加热技术的下一步研究和实车应用提供全面的视角。
中图分类号:
熊瑞, 朱宇华, 张骞慧, 张奎, 梅冰昂, 孙逢春. 锂离子电池低温加热技术研究进展及应用综述[J]. 机械工程学报, 2025, 61(22): 109-132.
XIONG Rui, ZHU Yuhua, ZHANG Qianhui, ZHANG Kui, MEI Bingang, SUN Fengchun. Review on Research Progress and Application of Low-temperature Heating Techniques for Lithium-ion Batteries[J]. Journal of Mechanical Engineering, 2025, 61(22): 109-132.
| [1] BRESSER D,HOSOI K,HOWELL D,et al. Perspectives of automotive battery R&D in China,Germany,Japan,and the USA[J]. Journal of Power Sources,2018,382:176-178. [2] MASIAS A, MARCICKI J, PAXTON W A.Opportunities and challenges of lithium ion batteries in automotive applications[J]. ACS Energy Letters,2021,6(2):621-630. [3] HU Xiaosong,ZOU Changfu,ZHANG Caiping,et al.Technological developments in batteries:A survey of principal roles,types,and management needs[J]. IEEE Power and Energy Magazine,2017,15(5):20-31. [4] MARINARO M,BRESSER D,BEYER E,et al. Bringing forward the development of battery cells for automotive applications:Perspective of R&D activities in China,Japan,the EU and the USA[J]. Journal of Power Sources,2020,459:228073. [5] SONG Ziyou,HOFMANN H,LI Jianqiu,et al. The optimization of a hybrid energy storage system at subzero temperatures:Energy management strategy design and battery heating requirement analysis[J]. Applied Energy,2015,159:576-588. [6] WANG Tianze,WU Xiaogang,XU Shaobing,et al.Performance of plug-in hybrid electric vehicle under low temperature condition and economy analysis of battery pre-heating[J]. Journal of Power Sources,2018,401:245-254. [7] ZHU Gaolong,WEN Kechun,LÜWeiqiang,et al.Materials insights into low-temperature performances of lithium-ion batteries[J]. Journal of Power Sources,2015,300:29-40. [8] NG B,COMAN P T,FAEGH E,et al. Low-temperature lithium plating/corrosion hazard in lithium-ion batteries:Electrode rippling,variable states of charge,and thermal and nonthermal runaway[J]. ACS Applied Energy Materials,2020,3(4):3653-3664. [9] WALDMANN T, WILKA M, KASPER M, et al.Temperature dependent ageing mechanisms in Lithiumion batteries-A post-mortem study[J]. Journal of Power Sources,2014,262:129-135. [10] LIN H P, CHUA D, SALOMON M, et al. Lowtemperature behavior of Li-ion cells[J]. Electrochemical and Solid-State Letters,2001,4(6):A71. [11] LI Yalun,FENG Xuning,REN Dongsheng,et al. Thermal runaway triggered by plated lithium on the anode after fast charging[J]. ACS Applied Materials&Interfaces,2019,11(50):46839-46850. [12] 陈泽宇,熊瑞,孙逢春.电动汽车电池安全事故分析与研究现状[J].机械工程学报,2019,55(24):93-104.CHEN Zeyu,XIONG Rui,SUN Fengchun. Analysis and research status of electric vehicle battery safety accidents[J]. Journal of Mechanical Engineering,2019,55(24):93-104. [13] TIPPMANN S, WALPER D, BALBOA L, et al.Low-temperature charging of lithium-ion cells part I:Electrochemical modeling and experimental investigation of degradation behavior[J]. Journal of Power Sources,2014,252:305-16. [14] 梦白汽车.平均续航达成率不足5成!一场冬测揭开了新能源车的"遮羞布"![EB/OL].(2022-12-27)[2023-12-13] . https://www.dongchedi.com/article/7181834083386376761.Meng Bai Car. The average range achievement rate is less than 50%!A winter test revealed the"fig leaf"of new energy vehicles![EB/OL].(2022-12-27)[2023-12-13] .https://www.dongchedi.com/article/7181834083386376761. [15] WANG Chaoyang,LIU Teng,YANG Xiaoguang,et al.Fast charging of energy-dense lithium-ion batteries[J].Nature,2022,611(7936):485-490. [16] YANG Xiaoguang,ZHANG Guangsheng,GE Shanhai,et al. Fast charging of lithium-ion batteries at all temperatures[J]. Proceedings of the National Academy of Sciences,2018,115(28):7266-7271. [17] CHEN Mingbiao,BAI Fanfei,SONG Wenji,et al. A multilayer electro-thermal model of pouch battery during normal discharge and internal short circuit process[J].Applied Thermal Engineering,2017,120:506-516. [18] CHIU Kuancheng,LIN Chihao,YEH Shengfa,et al.Cycle life analysis of series connected lithium-ion batteries with temperature difference[J]. Journal of Power Sources,2014,263:75-84. [19] SONG H S,JEONG J B,LEE B H,et al. Experimental study on the effects of pre-heating a battery in a low-temperature environment[C]//2012 IEEE Vehicle Power and Propulsion Conference, IEEE, 2012:1198-1201. [20] 王发成,张俊智,王丽芳.车载动力电池组用空气电加热装置设计[J].电源技术,2013,37(7):1184-1187.WANG Facheng,ZHANG Junzhi,WANG Lifang. Design of air electric heating device for vehicle power battery pack[J]. Power Technology,2013,37(7):1184-1187. [21] CHEN P,LU Z,JI L,et al. Design of the control scheme of power battery low temperature charging heating based on the real vehicle applications[C]//2013 IEEE Vehicle Power and Propulsion Conference,IEEE,2013:1-6. [22] KELLY K J,MIHALIC M,ZOLOT M. Battery usage and thermal performance of the Toyota Prius and Honda Insight during chassis dynamometer testing[C]//Seventeenth Annual Battery Conference on Applications and Advances:Proceedings of Conference,IEEE,2002:247-252. [23] WANG Yabo, RAO Zhao, LIU Shengchun, et al.Evaluating the performance of liquid immersing preheating system for Lithium-ion battery pack[J].Applied Thermal Engineering,2021,190:116811. [24] ZHU Linpei,XIONG Fei,CHEN Hu,et al. Thermal analysis and optimization of an EV battery pack for real applications[J]. International Journal of Heat and Mass Transfer,2020,163:120384. [25] 李罡,黄向东,符兴锋,等.液冷动力电池低温加热系统设计研究[J].湖南大学学报(自然科学版),2017,44(2):26-33.LI Gang,HUANG Xiangdong,FU Xingfeng,et al. Design and research of low-temperature heating system for liquid cooled power batteries[J]. Journal of Hunan University (Natural Science Edition),2017,44(2):26-33. [26] FAN Ruijia,ZHANG Caizhi,WANG Yi,et al. Numerical study on the effects of battery heating in cold climate[J].Journal of Energy Storage,2019,26:100969. [27] 邹慧明,唐坐航,杨天阳,等.电动汽车热管理技术研究进展[J].制冷学报,2022,43(3):15-27,56.ZOU Huiming,TANG Zhihang,YANG Tianyang,et al.Research progress in thermal management technology for electric vehicles[J]. Journal of Refrigeration,2022,43(3):15-27,56. [28] HAMMER H,AUDI A,DC J W. Comparative study of AC-and HP-systems using the refrigerants R134a and R744[C]//VDA Alternate Refrigerant Winter Meeting,2002. [29] 刘华.比亚迪纯电动汽车热泵空调技术详解[J].汽车维修与保养,2022(12):44-47.LIU Hua. BYD pure electric vehicle heat pump air conditioning technology explanation[J]. Automotive Repair and Maintenance,2022(12):44-47. [30] MANCINI N,MARDALL J S M,KOPITZ J,et al.Optimal source electric vehicle heat pump with extreme temperature heating capability and efficient thermal preconditioning:U.S. Patent 10,967,702[P]. 2021-04-06. [31] QI Zhaogang. Advances on air conditioning and heat pump system in electric vehicles-A review[J]. Renewable and Sustainable Energy Reviews,2014,38:754-764. [32] DONG Junqi, WANG Yibiao, JIA Shiwei, et al.Experimental study of R744 heat pump system for electric vehicle application[J]. Applied Thermal Engineering,2021,183:116191. [33] YANG Tianyang,YANG Yunchun,ZOU Huiming,et al.Comprehensive performance evaluation on a transcritical CO2 ejector-expansion heat pump system[J]. Applied Thermal Engineering,2024:123697. [34] YANG Tianyang,ZOU Huiming,TANG Mingsheng,et al. Experimental performance of a vapor-injection CO2heat pump system for electric vehicles in-30℃ to 50℃ range[J]. Applied Thermal Engineering,2022,217:119149. [35] 黄广燕,邹慧明,唐明生,等. R290电动汽车热泵空调性能实验研究[J].制冷学报,2020,41(6):40-46.HUANG Guangyan,ZOU Huiming,TANG Mingsheng,et al. Experimental study on performance of R290 electric vehicle heat pump air conditioning[J]. Journal of Refrigeration,2020,41(6):40-46. [36] LI Junqiu,WU Puen,TIAN Helei. Researches on heating low-temperature lithium-ion power battery in electric vehicles[C]//2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific),2014:1-6. [37] JIN Xin,LI Junqiu,ZHANG Chenning,et al. Researches on modeling and experiment of Li-ion battery PTC self-heating in electric vehicles[J]. Energy Procedia,2016,104:62-67. [38] LEI Zhiguo,ZHANG Chengning,LI Junqiu,et al.Preheating method of lithium-ion batteries in an electric vehicle[J]. Journal of Modern Power Systems and Clean Energy,2015,3(2):289-296. [39] YANG Wen,ZHOU Fei,LIU Yuchen,et al. Preheating performance by heating film for the safe application of cylindrical lithium-ion battery at low temperature[J]. Fire Technology,2023,59(3):1115-1135. [40] ZHANG Shupeng,SHEN Wenjing. Rule-based control of battery external heating for electric vehicle during driving at low temperatures[J]. IEEE Access, 2021, 9:149360-149371. [41] ZHANG Jianan, SUN Fengchun, WANG Zhenpo.Heating character of a LiMn2O4 battery pack at low temperature based on PTC and metallic resistance material[J]. Energy Procedia,2017,105:2131-2138. [42] UMEZU K,NOYAMA H. Air-conditioning system for electric vehicles (i-MiEV)[C]//SAE Automotive Refrigerant&System Efficiency Symposium,2010,1. [43] LAURIKKO J, GRANSTRÖM R, HAAKANA A.Realistic estimates of EV range based on extensive laboratory and field tests in Nordic climate conditions[J].World Electric Vehicle Journal,2013,6(1):192-203. [44] ALAOUI C,SALAMEH Z M. Solid state heater cooler:design and evaluation[C]//LESCOPE 01. 2001 Large Engineering Systems Conference on Power Engineering.Conference Proceedings. Theme:Powering Beyond 2001(Cat. No. 01ex490),IEEE,2001:139-145. [45] WU Shujie,XIONG Rui,LI Hailong,et al. The state of the art on preheating lithium-ion batteries in cold weather[J]. Journal of Energy Storage,2020,27:101059. [46] ALAOUI C, SALAMEH Z M. A novel thermal management for electric and hybrid vehicles[J]. IEEE Transactions on Vehicular Technology,2005,54(2):468-476. [47] SALAMEH Z M,ALAOUI C. Modeling and simulation of a thermal management system for electric vehicles[C]//IECON'03. 29th Annual Conference of the IEEE Industrial Electronics Society (IEEE Cat. No.03CH37468),IEEE,2003,1:887-890. [48] SOMBRA A K R,SAMPAIO F C,BASCOPéR P T,et al. Digital temperature control project using Peltier modules to improve the maintenance of battery lifetime[C]//2016 12th IEEE International Conference on Industry Applications (INDUSCON),IEEE,2016:1-7. [49] ALAOUI C. Solid-state thermal management for lithium-ion EV batteries[J]. IEEE Transactions on Vehicular Technology,2012,62(1):98-107. [50] AL HALLAJ S, SELMAN J. A novel thermal management system for electric vehicle batteries using phase-change material[J]. Journal of the Electrochemical Society,2000,147(9):3231. [51] LING Z,WEN X,ZHANG Z,et al. Warming-up effects of phase change materials on lithium-ion batteries operated at low temperatures[J]. Energy Technology,2016,4(9):1071-1076. [52] GHADBEIGI L,DAY B,LUNDGREN K,et al. Cold temperature performance of phase change material based battery thermal management systems[J]. Energy Reports,2018,4:303-307. [53] HUO Yutao,RAO Zhonghao. Investigation of phase change material based battery thermal management at cold temperature using lattice Boltzmann method[J].Energy Conversion and Management,2017,133:204-215. [54] GAO Hongtao, CHEN Meiqi, HONG Jiaju, et al.Investigation on battery thermal management based on phase change energy storage technology[J]. Heat and Mass Transfer,2021:1-14. [55] LING Ziye,WEN Xiaoyan,ZHANG Zhengguo,et al.Battery thermal management systems (BTMs) based on phase change material (PCM):A comprehensive review[J].Chemical Engineering Journal,2022,430:132741. [56] LUO Mingyun,SONG Jiaqi,LING Ziye,et al. Phase change material coat for battery thermal management with integrated rapid heating and cooling functions from-40℃ to 50℃[J]. Materials Today Energy,2021,20:100652. [57] TIAN Dongbo,LIU Weijun,ZHANG Shuhua,et al.Simulation of a set of lithium-ion batteries with composite phase change materials and heating films thermal management system at low temperature[J]. Journal of Thermal Science and Engineering Applications,2021,13(1):011002. [58] LÜYoufu, LUO Weiming, LI Chuanchang, et al.Experimental study on the integrated thermal management system based on composite phase change materials coupled with metal heating film[J]. Applied Thermal Engineering,2023,221:119840. [59] 王波,孙聪聪,王雅亮,等.基于PCM的锂电池保温及预热性能研究[J].化学工程,2022,50(6):23-28.WANG Bo,SUN Congcong,WANG Yaliang,et al.Research on insulation and preheating performance of lithium batteries based on PCM[J]. Chemical Engineering,2022,50(6):23-28. [60] 范智伟,乔丹,崔海港.锂离子电池充放电倍率对容量衰减影响研究[J].电源技术,2020,44(3):325-329.FAN Zhiwei,JORDAN,CUI Haigang. Study on the effect of charge and discharge ratio on capacity attenuation of lithium-ion battery[J]. Chinese Journal of Power Sources,2020,44(3):325-329. [61] NING Guang,HARAN B,POPOV B N. Capacity fade study of lithium-ion batteries cycled at high discharge rates[J]. Journal of Power Sources,2003,117(1-2):160-169. [62] WU Xiaogang,CHEN Zhe,WANG Zhiyang. Analysis of low temperature preheating effect based on battery temperature-rise model[J]. Energies,2017,10(8):1121. [63] RUAN Haijun,JIANG Jiuchun,SUN Bingxiang,et al. An optimal internal-heating strategy for lithium-ion batteries at low temperature considering both heating time and lifetime reduction[J]. Applied Energy,2019,256:113797. [64] 陈泽宇,熊瑞,李世杰,等.电动载运工具锂离子电池低温极速加热方法研究[J].机械工程学报,2021,57(4):113-120.CHEN Zeyu,XIONG Rui,LI Shijie,et al. Research on low-temperature and high-speed heating methods for lithium-ion batteries for electric transport tools[J]. Journal of Mechanical Engineering,2021,57(4):113-120. [65] 熊瑞,马骕骁,陈泽宇,等.锂离子电池极速自加热中的电-热耦合特性及建模[J].机械工程学报,2021,57(2):179-189.XIONG Rui,MA Suxiao,CHEN Zeyu,et al. Electrical thermal coupling characteristics and modeling in extreme self heating of lithium-ion batteries[J]. Journal of Mechanical Engineering,2021,57(2):179-189. [66] 陈泽宇,张渤,熊瑞,等.动力电池低温极速自加热系统加热一致性及其影响因素的建模分析[J].机械工程学报,2021,57(22):226-236.CHEN Zeyu,ZHANG Bo,XIONG Rui,et al. Modeling and analysis of heating consistency and influencing factors of low-temperature and high-speed self heating systems for power batteries[J]. Journal of Mechanical Engineering,2021,57(22):226-236. [67] XIONG Rui,LI Zhengyang,YANG Ruixin,et al. Fast self-heating battery with anti-aging awareness for freezing climates application[J]. Applied Energy,2022,324:119762. [68] STUART T,HANDE A. HEV battery heating using AC currents[J]. Journal of Power Sources,2004,129(2):368-378. [69] ZHANG Jianbo,GE Hao,LI Zhe,et al. Internal heating of lithium-ion batteries using alternating current based on the heat generation model in frequency domain[J]. Journal of Power Sources,2015,273:1030-1037. [70] GUO Shanshan,XIONG Rui,SUN Fengchun,et al. An echelon internal heating strategy for lithium-ion battery[J].Energy Procedia,2017,142:3135-3140. [71] ZHANG Lei,FAN Wentao,WANG Zhenpo,et al. Battery heating for lithium-ion batteries based on multi-stage alternative currents[J]. Journal of Energy Storage,2020,32:101885. [72] GE Hao, HUANG Jun, ZHANG Jianbo, et al.Temperature-adaptive alternating current preheating of lithium-ion batteries with lithium deposition prevention[J].Journal of The Electrochemical Society,2015,163(2):A290. [73] YANG Y,WEI X,LIU Y,et al. A research on the AC heating of automotive lithium-ion battery[J]. Automot Eng,2016,38(7):901-908. [74] LI Junqiu,SUN Danni. Lithium-ion batteries modeling and optimization strategies for sinusoidal alternating current heating at low temperature[J]. Energy Procedia,2018,152:562-567. [75] RUAN Haijun,JIANG Jiuchun,SUN Bingxiang,et al. A rapid low-temperature internal heating strategy with optimal frequency based on constant polarization voltage for lithium-ion batteries[J]. Applied Energy,2016,177:771-782. [76] GUO Shanshan,XIONG Rui,SHEN Weixiang,et al.Aging investigation of an echelon internal heating method on a three-electrode lithium ion cell at low temperatures[J].Journal of Energy Storage,2019,25:100878. [77] JIANG Jiuchun,RUAN Haijun,SUN Bingxiang,et al. A low-temperature internal heating strategy without lifetime reduction for large-size automotive lithium-ion battery pack[J]. Applied Energy,2018,230:257-266. [78] SHANG Yunlong,ZHANG Chenghui,CUI Naxin,et al.A fast-speed heater with internal and external heating for lithium-ion batteries at low temperatures[C]//2018 IEEE Applied Power Electronics Conference and Exposition (APEC),2018:3440-3443. [79] SHANG Yunlong,LIU Kailong,CUI Naxin,et al. A sine-wave heating circuit for automotive battery self-heating at subzero temperatures[J]. IEEE Transactions on Industrial Informatics,2019,16(5):3355-3365. [80] SHANG Yunlong,LIU Kailong,CUI Naxin,et al. A compact resonant switched-capacitor heater for lithium-ion battery self-heating at low temperatures[J].IEEE Transactions on Power Electronics,2019,35(7):7134-7144. [81] ZHU Chong, HAN Jingbo, ZHUANG Hua, et al.Modeling and control of an integrated self-heater for automotive batteries based on traction motor drive reconfiguration[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics,2021,11(1):384-395. [82] XIONG Rui,ZHANG Kui,QU Siyu,et al. A fast pre-heating method for lithium-ion batteries by wireless energy transfer at low temperatures[J]. e Transportation,2023,16:100227. [83] SHANG Yunlong,ZHU Chong,LU Gaopeng,et al.Modeling and analysis of high-frequency alternatingcurrent heating for lithium-ion batteries under lowtemperature operations[J]. Journal of Power Sources,2020,450:227435. [84] QIU Changsheng,HE Gang,SHI Wankai,et al. The polarization characteristics of lithium-ion batteries under cyclic charge and discharge[J]. Journal of Solid State Electrochemistry,2019,23:1887-1902. [85] WANG N,SHANG Y,DUAN B,et al. Study on the effect of different AC excitations on the internal heating for low-temperature batteries[C]//2019 3rd Conference on Vehicle Control and Intelligence (CVCI),IEEE,2019. [86] ZHU Jiangong,SUN Zechang,WEI Xuezhe,et al.Experimental investigations of an AC pulse heating method for vehicular high power lithium-ion batteries at subzero temperatures[J]. Journal of Power Sources,2017,367:145-157. [87] QIN Yudi,DU Jiuyu,LU Languang,et al. A rapid lithium-ion battery heating method based on bidirectional pulsed current:Heating effect and impact on battery life[J].Applied Energy,2020,280:115957. [88] LI Yalun,GAO Xinlei,QIN Yudi,et al. Drive circuitry of an electric vehicle enabling rapid heating of the battery pack at low temperatures[J]. i Science,2021,24(1):101921. [89] HA S H,LEE J I,YOON H,et al. Frequency-variable resonant self-heating technique for Lithium-Ion Batteries at low temperature[J]. IEEE Transactions on Aerospace and Electronic Systems,2022,58(4):3399-3410. [90] ZHONG Hao,LEI Fei,ZHU Wenhao,et al. An adaptive low-temperature mutual pulse heating method based on multiplexing converters for power-redistributable lithium-ion battery pack[J]. Journal of Energy Storage,2023,67:107441. [91] WU Xiaogang, CUI Zhihao, CHEN Ersong, et al.Capacity degradation minimization oriented optimization for the pulse preheating of lithium-ion batteries under low temperature[J]. Journal of Energy Storage,2020,31:101746. [92] WANG Chaoyang,ZHANG Guangsheng,GE Shanhai,et al. Lithium-ion battery structure that self-heats at low temperatures[J]. Nature,2016,529(7587):515-518. [93] YANG Xiaoguang, ZHANG Guangsheng, WANG Chaoyang. Computational design and refinement of self-heating lithium ion batteries[J]. Journal of Power Sources,2016,328:203-211. [94] LEI Zhiguo,ZHANG Yuwen,LEI Xueguo. Improving temperature uniformity of a lithium-ion battery by intermittent heating method in cold climate[J].International Journal of Heat and Mass Transfer,2018,121:275-281. [95] LEI Zhiguo,ZHANG Yuwen,LEI Xueguo. Temperature uniformity of a heated lithium-ion battery cell in cold climate[J]. Applied Thermal Engineering,2018,129:148-154. [96] YANG Xiaoguang, LIU Teng, WANG Chaoyang.Innovative heating of large-size automotive Li-ion cells[J].Journal of Power Sources,2017,342:598-604. [97] ZHANG G,GE S,XU T,et al. Rapid self-heating and internal temperature sensing of lithium-ion batteries at low temperatures[J]. Electrochimica Acta,2016,218:149-155. [98] ZHANG Zhongbo,YU Wei,LI Haibing,et al. Heat transfer characteristics and low-temperature performance of a Li-ion battery with an inner cooling/heating structure[J]. Applied Thermal Engineering,2023,219:119352. [99] JIANG Zhiyuan, QU Zhiguo, WANG Qiong.Experimental and numerical investigation of fast preheating of lithium ion pouch cell via low-power inductive heating in cold climate[J]. International Journal of Heat and Mass Transfer,2023,214:124381. [100] KRISTON A,KERSYS A,ANTONELLI A,et al.Initiation of thermal runaway in Lithium-ion cells by inductive heating[J]. Journal of Power Sources,2020,454:227914. [101] 熊瑞,王侃,郭姗姗.锂离子动力电池低温复合加热方法[J].机械工程学报,2019,55(14):53-59.XIONG Rui, WANG Kan, GUO Shanshan. Low temperature composite heating method for Li-ion power battery[J]. Journal of Mechanical Engineering,2019,55(14):53-59. [102] 李夔宁,王靖鸿,谢翌,等.锂离子电池低温复合加热策略及优化[J].储能科学与技术,2022,11(10):3191-3199.LI Kuoning,WANG Jinghong,XIE Yi,et al. Low temperature composite heating strategy and optimization of Li-ion battery[J]. Energy Storage Science and Technology,2022,11(10):3191-3199. [103] LI Weizhou,BAO Zhiming,GAO Qingchen,et al.Investigation of novel pulse preheating strategies for lithium-ion batteries at subzero temperature based on a multi-level CFD platform[J]. eTransportation,2024,19:100307. [104] RUAN Haijun,SUN Bingxiang,ZHU Tao,et al.Compound self-heating strategies and multi-objective optimization for lithium-ion batteries at low temperature[J]. Applied Thermal Engineering,2021,186:116158. [105] HUANG Deyang, CHEN Ziqiang, ZHOU Shiyao.Model prediction-based battery-powered heating method for series-connected Li-ion battery pack working at extremely cold temperatures[J]. Energy,2021,216:119236. [106] LIN Cheng,KONG Weifeng,TIAN Yu,et al. Sandwich self-heating structure-based lithium-ion battery system and its application in the fuel cell bus for Beijing Winter Olympic Games[J]. Energy Conversion and Management,2023,284:116977. [107] 邹慧明,唐坐航,杨天阳,等.电动汽车热管理技术研究进展[J].制冷学报,2022,43(3):15-27.ZOU Huiming,TANG Qihang,YANG Tianyang,et al.Research progress of thermal management technology for electric vehicles[J]. Journal of Refrigeration,2022,43(3):15-27. [108] 胡志林,张天强,杨钫.特斯拉电动汽车热管理技术发展趋势[J].汽车文摘,2021(1):53-57.HU Zhilin,ZHANG Tianqiang, YANG Fang. The development trend of Tesla electric vehicle thermal management technology[J]. Automotive Digest,2021(1):53-57. [109] 陈建强,王俊龙,王亮,等.电动汽车及其动力电池的加热方法、装置和存储介质:中国,202010475226.2[P]. 2021-12-03.CHEN Jianqiang,WANG Junlong,WANG Liang,et al.Heating methods,devices,and storage media for electric vehicles and their power batteries:China,202010475226.2[P]. 2021-12-03. [110] 何龙,邓林旺,冯天宇,等.电动汽车的动力电池加热方法、装置以及汽车:中国,202010476466.4[P].2021-12-03.HE Long,DENG Linwang,FENG Tianyu,et al. Heating methods,devices,and automobiles for power batteries of electric vehicles:China, 202010476466.4[P]. 2021-12-03. [111] 李武杰,莫旭杰,王兴辉,等.电池自加热装置及其控制方法和车辆:中国,202010478168.9[P]. 2021-12-03.LI Wujie,MO Xujie,WANG Xinghui,et al. Battery self heating device and its control method and vehicle:China,202010478168.9[P]. 2021-12-03. [112] 杨瑞鑫,熊瑞,孙逢春.锂离子动力电池外部短路测试平台开发与试验分析[J].电气工程学报,2021,16(1):103-118.YANG Ruixin, XIONG Rui, SUN Fengchun.Experimental platform development and characteristics analysis of external short circuit in lithium-ion batteries[J]. Journal of Electrical Engineering,2021,16(1):103-118. [113] 王雅博,朱信霖,李雪强,等.电化学储能系统电池柜散热的影响因素分析[J].电气工程学报,2022,17(1):225-233.WANG Yabo,ZHU Xinlin,LI Xueqiang,et al. Analysis of influencing factors of battery cabinet heat dissipation in electrochemical energy storage system[J]. Journal of Electrical Engineering,2022,17(1):225-233. [114] LI Kuijie,LI Yalun,RUI Xinyu,et al. Experimental study on the effect of state of charge on failure propagation characteristics within battery modules[J].Chinese Journal of Electrical Engineering,2023,9(3):3-14. [115] WU Peihao,LYU Nawei,SONG Yuhang,et al. Li-ion battery failure warning methods for energy-storage systems[J]. Chinese Journal of Electrical Engineering,2024,10(1):86-100. [116] 徐东静.比亚迪唐DM-i动力电池系统技术剖析[J].汽车维修技师,2024(3):40-41.XU Dongjing. Analysis of BYD Tang DM-i power battery system technology[J]. Auto Maintenance,2024(3):40-41. [117] 侯贻真,但志敏,张伟,等.一种电池组加热装置与控制方法:中国,CN108711662B[P]. 2018-10-26.HOU Yizhen,DAN Zhimin,ZHANG Wei,et al. A heating device and control method for battery packs:China,CN108711662B[P]. 2018-10-26. [118] 李雨佳,欧阳权,刘灏仪,等.基于支持向量机与改进高斯过程混合模型的车用电池容量预测方法[J].电气工程学报,2024,19(1):87-96.LI Yujia,OUYANG Quan,LIU Haoyi,et al. Vehicle battery capacity prediction based on hybrid model of support vector machine and improved Gaussian process[J]. Journal of Electrical Engineering,2024,19(1):87-96. [119] 朱建功,戴海峰,王学远,等.从电池管理到电化学数字电源[J].电气工程学报,2024,19(1):3-22.ZHU Jiangong,DAI Haifeng,WANG Xueyuan,et al.Battery management towards the digitalized electrochemical power source[J]. Journal of Electrical Engineering,2024,19(1):3-22. [120] 金建新,虞儒新,刘刚,等.锂离子电池健康状态估算方法研究进展[J].电气工程学报,2024,19(1):33-48.JIN Jianxin,YU Ruxin,LIU Gang,et al. Research progress on state-of-health estimating method for lithium-ion batteries[J]. Journal of Electrical Engineering,2024,19(1):33-48. |
| [1] | 张保坤, 邓钧君, 王震坡, 陈德亮, 李蓝天, 李明洋. 电动汽车双向无线电能传输系统研究综述[J]. 机械工程学报, 2025, 61(8): 170-192. |
| [2] | 张周卫, 代德山, 汪雅红, 牛旭转. 低温缠绕管内流体螺旋绕流压降特性研究[J]. 机械工程学报, 2025, 61(5): 297-307. |
| [3] | 汤勇, 赵威, 尹树彬, 袁雪鹏, 袁伟, 张仕伟. 基于相变传热的动力电池高效复合热控技术研究综述[J]. 机械工程学报, 2025, 61(4): 176-194. |
| [4] | 尤国贵, 卢剑伟, 张国军, 苏俊收, 蔡泽民. 插电式混合动力汽车能量管理策略研究综述[J]. 机械工程学报, 2025, 61(4): 195-218. |
| [5] | 王法安, 杨全合, 殷国栋, 梁晋豪, 张兆国. 考虑时变状态参数的车辆纵-垂向运动矢量控制[J]. 机械工程学报, 2025, 61(4): 239-248. |
| [6] | 李骏, 李继秋, 孙亚诚, 单丰武, 曾建邦. 基于驾驶行为的纯电动汽车剩余续驶里程预测[J]. 机械工程学报, 2025, 61(4): 262-272. |
| [7] | 韦春辉, 吴维, 桂鹏, 邹天刚, 苑士华. 基于MPS方法液力变矩器低温启动搅油力矩研究[J]. 机械工程学报, 2025, 61(2): 257-267. |
| [8] | 熊瑞, 张凯旋, 李海龙. 锂离子电池热-电特性耦合建模与可视化研究[J]. 机械工程学报, 2025, 61(2): 268-280. |
| [9] | 歹润润, 魏中宝, 胡鉴. 基于多维特征聚类的锂离子电池析锂诊断方法[J]. 机械工程学报, 2025, 61(18): 1-11. |
| [10] | 毛阳阳, 邓海鹏, 王冰川, 王勇. 锂离子电池快速充电策略设计研究进展[J]. 机械工程学报, 2025, 61(16): 180-203. |
| [11] | 刘伟, 程旺军, 苑世剑. 高强铝合金薄壁构件超低温成形制造研究进展[J]. 机械工程学报, 2025, 61(14): 1-19. |
| [12] | 董非, 易幼平, 黄始全, 何海林. 2060铝锂合金超低温变形行为与复杂薄壁件拉深成形工艺研究[J]. 机械工程学报, 2025, 61(14): 20-28. |
| [13] | 韩国丰, 戚宇彤, 顾彬, 李淑慧, 何霁, 黄辉. 6系铝合金复杂车身构件超低温成形研究[J]. 机械工程学报, 2025, 61(14): 29-35. |
| [14] | 凡晓波, 杨光, 邬方兴, 关阳. 铝合金深腔超薄箱底超低温净成形及性能调控[J]. 机械工程学报, 2025, 61(14): 36-44. |
| [15] | 王睿乾, 李鲁博, 刘伟. Al-Cu合金超低温变形行为及强化机制分析[J]. 机械工程学报, 2025, 61(14): 45-55. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
