机械工程学报 ›› 2025, Vol. 61 ›› Issue (18): 190-203.doi: 10.3901/JME.2025.18.190
• 运载工程 • 上一篇
殷国栋
收稿日期:2025-01-08
修回日期:2025-05-10
发布日期:2025-11-08
作者简介:殷国栋,男,1976年出生,博士,教授,博士研究生导师。主要研究方向为车辆系统动力学与控制、电动化智能无人汽车。E-mail:ygd@seu.edu.cn
基金资助:YIN Guodong
Received:2025-01-08
Revised:2025-05-10
Published:2025-11-08
摘要: 车辆动力学理论是汽车设计和控制的基础。随着汽车电动化与智能化快速发展,分布式、模块化与多冗余的新型底盘结构打破了传统车辆运动功能边界,车载、路测与网联等智能信息的引入也使车辆系统逐渐向物理信息系统演变。现有以“刚体-轮胎-路面”三要素为核心的车辆动力学理论体系难以统一化表征多运动形态的底盘动力学,更无法阐述多源外部环境信息与车辆之间的力学交互本质,其理论内涵与辐射范围凸显出模型构建通用性弱和环境信息包容性差两大局限。针对上述问题,提出一种广义车辆系统动力学理论架构,将底盘约束、车间作用与信息交互统一抽象为广义车辆系统内部的广义作用力,建立了涵盖机械、电子与信息多物理场耦合作用的动力学体系,丰富了传统“建模-估计-控制”理论内涵,形成了可指导高性能车辆底盘设计与协同控制的统一理论框架。
中图分类号:
殷国栋. 广义车辆系统动力学:理论框架与总体概述[J]. 机械工程学报, 2025, 61(18): 190-203.
YIN Guodong. Generalized Vehicle System Dynamics: Theoretical Framework and Comprehensive Overview[J]. Journal of Mechanical Engineering, 2025, 61(18): 190-203.
| [1] COLE D J. Occupant–vehicle dynamics and the role of the internal model[J]. Vehicle System Dynamics,2018,56(5):661-688. [2] KUTLUAY E,WINNER H. Validation of vehicle dynamics simulation models-a review[J]. Vehicle System Dynamics,2014,52(2):186-200. [3] 刘海超,刘红旗,冯明,等. 智能汽车集成式线控制动系统传动机构优化设计[J]. 机械工程学报,2022,58(20):399-409. LIU Haichao,LIU Hongqi,FENG Ming,et al. Optimal designing of transmission mechanism in integrated brake-by-wire system of intelligent vehicles[J]. Journal of Mechanical Engineering,2022,58(20):399-409. [4] 关书睿,李克强,周俊宇,等. 面向强制换道场景的智能网联汽车协同换道策略[J]. 汽车工程,2024,46(2):201-210,280. GUAN Shurui,LI Keqiang,ZHOU Junyu,et al. A cooperative lane change strategy for intelligent connected vehicles oriented to mandatory lane change scenarios[J]. Automotive Engineering,2024,46(2):201-210,280. [5] MASOULEH M I,LIMEBEER D J N. Region of attraction analysis for nonlinear vehicle lateral dynamics using sum-of-squares programming[J]. Vehicle System Dynamics,2017,56(7):1118-1138. [6] YANG Xinwei,WU Chaozhong,HE Yi,et al. A dynamic rollover prediction index of heavy-duty vehicles with a real-time parameter estimation algorithm using NLMS method[J]. IEEE Transactions on Vehicular Technology,2022,71(3):2734-2748. [7] WANG Fengchen,SHI Yue,CHEN Yan. Hierarchical MIMO decoupling control for vehicle roll and planar motions with control allocation[J]. IEEE Transactions on Vehicular Technology,2024,73(1):494-503. [8] 张国光,张勇超,喻凡. 车辆电动悬架的混合不确定建模与μ综合控制器设计[J]. 汽车工程,2012,34(12):1100-1106. ZHANG Guoguang,ZHANG Yongchao,YU Fan. Mixed uncertainty modeling and μ synthesis controller design for vehicle active suspension with motor actuator[J]. Automotive Engineering,2012,34(12):1100-1106. [9] SHI Yue,HUANG Yiwen,CHEN Yan. Trajectory planning of autonomous trucks for collision avoidance with rollover prevention[J]. IEEE Transactions on Intelligent Transportation Systems,2022,23(7):8930-8939. [10] DANQUAH B,RIEDMAIER S,LIENKAMP M. Potential of statistical model verification,validation and uncertainty quantification in automotive vehicle dynamics simulations:A review[J]. Vehicle System Dynamics,2022,60(4):1292-1321. [11] 杨绍普,张俊宁,路永婕,等. 汽车-道路相互作用研究进展[J]. 机械工程学报,2021,57(12):1-17. YANG Shaopu,ZHANG Junning,LU Yongjie,et al. Research progress of vehicle-pavement interaction[J]. Journal of Mechanical Engineering,2021,57(12):1-17. [12] BESSELINK I J M,SCHMEITZ A J C,PACEJKA H B. An improved magic formula/Swift tyre model that can handle inflation pressure changes[J]. Vehicle System Dynamics,2010,48(sup1):337-352. [13] 郭孔辉. UniTire统一轮胎模型[J]. 机械工程学报,2016,52(12):90-99. GUO Konghui. UniTire:unified tire model[J]. Journal of Mechanical Engineering,2016,52(12):90-99. [14] HE Rui,JIMENEZ E,SAVITSKI D,et al. Investigating the parameterization of Dugoff tire model using experimental tire-ice data[J]. SAE International Journal of Passenger Cars - Mechanical Systems,2017,10(1):83-92. [15] 管欣,段春光,卢萍萍,等. 基于稳态插值模型的动态车轮模型[J]. 汽车工程,2014(6):720-724,739. GUAN Xin,DUAN Chunguang,LU Pingping,et al. A dynamic wheel model based on steady-state interpolation model[J]. Automotive Engineering,2014(6):720-724,739. [16] LIU Wei,HUA Min,DENG Zhiyun,et al. A systematic survey of control techniques and applications in connected and automated vehicles[J]. IEEE Internet of Things Journal,2023,10(24):21892-21916. [17] 任彦君,殷国栋,沙文瀚,等. 基于运动学信息融合的四轮驱动汽车纵向车速自适应估计方法[J]. 机械工程学报,2021,57(8):184-194. REN Yanjun,YIN Guodong,SHA Wenhan,et al. Longitudinal velocity adaptive estimation for four-wheel-drive vehicles via kinematic information fusion [J]. Journal of Mechanical Engineering,2021,57(8):184-194. [18] LIU Yicai,HUANG Changyao,ZHOU Daolin,et al. Vehicle sideslip angle estimation based on strong tracking SCKF considering road inclinations[J]. IEEE Transactions on Vehicular Technology,2023,72(12):15535-15547. [19] PARK G. Vehicle sideslip angle estimation based on interacting multiple model Kalman filter using Low-Cost sensor fusion[J]. IEEE Transactions on Vehicular Technology,2022,71(6):6088-6099. [20] WANG Yan,GENG Keke,XU Liwei,et al. Estimation of sideslip angle and tire cornering stiffness using fuzzy adaptive robust cubature Kalman filter[J]. IEEE Transactions on Systems,Man,and Cybernetics:Systems,2022,52(3):1451-1462. [21] WANG Yan,XU Liwei,ZHANG Fengjiao,et al. An adaptive fault-tolerant EKF for vehicle state estimation with partial missing measurements[J]. IEEE/ASME Transactions on Mechatronics,2021,26(3):1318-1327. [22] LEANZA A,MANTRIOTA G,REINA G. On the vehicle dynamics prediction via model-based observation[J]. Vehicle System Dynamics,2024,62(5):1181-1202. [23] WANG Yan,HU Jingyu,WANG Faan,et al. Tire road friction coefficient estimation:review and research perspectives[J]. Chinese Journal of Mechanical Engineering,2022,35(2):1-11. [24] WANG Yan,LV Chen,YAN Yongjun,et al. An integrated scheme for coefficient estimation of tire–road friction with mass parameter mismatch under complex driving scenarios[J]. IEEE Transactions on Industrial Electronics,2022,69(12):13337-13347. [25] BOADA B L,GARCIA-POZUELO D,BOADA M J L,et al. A constrained dual Kalman filter based on pdf truncation for estimation of vehicle parameters and road bank angle:analysis and experimental validation[J]. IEEE Transactions on Intelligent Transportation Systems,2017,18(4):1006-1016. [26] CHOR W T,TAN C P,BAKIBILLAH A S M,et al. Robust vehicle mass estimation using recursive least M-Squares algorithm for intelligent vehicles[J]. IEEE Transactions on Intelligent Vehicles,2024,9(1):165-177. [27] SHAO Liang,JIN Chi,LEX C,et al. Robust road friction estimation during vehicle steering[J]. Vehicle System Dynamics,2018,57(4):493-519. [28] 沈童,殷国栋,任彦君,等. 考虑轮胎弛豫特性的轮毂电机驱动电动汽车鲁棒自适应驱动防滑控制[J]. 机械工程学报,2023,59(14):222-236. SHEN Tong,YIN Guodong,REN Yanjun,et al. Robust adaptive ASR control for in-wheel motor driving electric vehicle considering longitudinal tire lag [J]. Journal of Mechanical Engineering,2023,59(14):222-236. [29] LENZO B,ZANCHETTA M,SORNIOTTI A,et al. Yaw rate and sideslip angle control through single input single output direct yaw moment control[J]. IEEE Transactions on Control Systems Technology,2021,29(1):124-139. [30] WU Yang,LI Boyuan,ZHANG Nong,et al. Rear-steering based decentralized control of four-wheel steering vehicle[J]. IEEE Transactions on Vehicular Technology,2020,69(10):10899-10913. [31] LU Yanbo,LIANG Jinhao,WANG Faan,et al. An active front steering system design considering the CAN network delay[J]. IEEE Transactions on Transportation Electrification,2023,9(4):5244-5256. [32] SHEN Tong,YIN Guodong,REN Yanjun,et al. Stability and maneuverability guaranteed torque distribution strategy of DDEV in handling limit:A novel LSTM-LMI approach[J]. IEEE/ASME Transactions on Mechatronics,2022,27(6):5647-5658. [33] YIN Guodong,CHEN Nan,LI Pu. Improving handling stability performance of four-wheel steering vehicle via μ-synthesis robust control[J]. IEEE Transactions on Vehicular Technology,2007,56(5):2432-2439. [34] RIBEIRO A M,FIORAVANTI A R,MOUTINHO A,et al. Nonlinear state-feedback design for vehicle lateral control using sum-of-squares programming[J]. Vehicle System Dynamics,2022,60(3):743-769. [35] HU Xiao,WANG Ping,CAI Shuo,et al. Vehicle stability analysis by zero dynamics to improve control performance[J]. IEEE Transactions on Control Systems Technology,2023,31(6):2365-2379. [36] ZHAO Ze,TAGHAVIFAR H,DU Haiping,et al. In-wheel motor vibration control for distributed-driven electric vehicles:A review[J]. IEEE Transactions on Transportation Electrification,2021,7(4):2864-2880. [37] 金贤建,王佳栋,徐利伟,等. 轮毂电机驱动电动汽车主动悬架μ综合鲁棒控制研究[J]. 机械工程学报,2024,60(16):259-269. JIN Xianjian,WANG Jiadong,XU Liwei,et al. μ-Synthesis robust control for active suspension of in-wheel-motor-driven electric vehicles[J]. Journal of Mechanical Engineering,2024,60(16):259-269. [38] JIN Xianjian,WANG Jiadong,HE Xiongkui,et al. Improving vibration performance of electric vehicles based on in-wheel motor-active suspension system via robust finite frequency control[J]. IEEE Transactions on Intelligent Transportation Systems,2023,24(2):1-13. [39] MAZZILLI V,DE PINTO S,PASCALI L,et al. Integrated chassis control:Classification,analysis and future trends[J]. Annual Reviews in Control,2021,51:172-205. [40] 余志生. 汽车理论[M]. 北京:机械工业出版社,2000. YU Zhisheng. Automotive theory[M]. Beijing:China Machine Press,2000. [41] ABE M. Vehicle handling dynamics:Theory and application[M]. Oxford:Butterworth-Heinemann,2015. [42] RAJAMANI R. Vehicle dynamics and control[M]. Berlin:Springer Science & Business Media,2011. |
| [1] | 邹铁方, 罗鹏琛, 陈得着, 王丹琦, 冯浩. 人车碰撞中人体安全/危险落地机制预测[J]. 机械工程学报, 2025, 61(15): 275-284. |
| [2] | 解少博, 张涛, 张风奇, 樊宁, 胡晓松. 考虑路口车辆排队影响的混动汽车速度规划与能量管理分层优化[J]. 机械工程学报, 2025, 61(14): 197-211. |
| [3] | 马文霄, 孙博华, 赵帅, 代凯, 赵航, 吴坚. 基于混合增强智能的人机混合决策策略研究[J]. 机械工程学报, 2025, 61(10): 288-304. |
| [4] | 赵礼辉, 王震, 刘天胤, 刘东俭, 翁硕, 张东东. 随机载荷下电驱动系统高速球轴承疲劳寿命预测方法研究[J]. 机械工程学报, 2025, 61(8): 214-227. |
| [5] | 张聪, 刘爽, 赵丁选, 卫燕侨, 刘世纪. 多作动器协同的特种车辆主动悬架控制方法[J]. 机械工程学报, 2025, 61(8): 228-239. |
| [6] | 张宁, 吴志豪, 张浩彬, 李普, 徐利伟, 殷国栋. 考虑车辆系统动力学与轮胎滑移能耗的车辆编队纵向协调控制[J]. 机械工程学报, 2025, 61(8): 250-260. |
| [7] | 邵东, 尹思维, 李亮, 王翔宇, 魏凌涛, 周道林. 基于神经网络的ESC线控制动压力估计与控制[J]. 机械工程学报, 2025, 61(4): 219-228. |
| [8] | 王法安, 杨全合, 殷国栋, 梁晋豪, 张兆国. 考虑时变状态参数的车辆纵-垂向运动矢量控制[J]. 机械工程学报, 2025, 61(4): 239-248. |
| [9] | 赵礼辉, 陈沛, 王震, 张东东, 翁硕, 朱一光. 运行工况下车辆动态载荷预测方法研究[J]. 机械工程学报, 2025, 61(4): 249-261. |
| [10] | 唐小林, 甘炯鹏, 张振果. 横纵向耦合跟车场景下基于多智能体深度强化学习的混合动力车队协同能量管理研究[J]. 机械工程学报, 2025, 61(2): 236-246. |
| [11] | 杨显通, 郑玲, 金彦林, 张涵柯, 曾迪, 冀杰. 基于车载视觉和动力学模型的路面附着系数融合估计方法[J]. 机械工程学报, 2024, 60(24): 254-264. |
| [12] | 余旭东, 赵剑, 郭烈, 李刚, 黄海波. 考虑接地效应的轮胎柔性圆环建模及其径向振动特性研究[J]. 机械工程学报, 2024, 60(23): 152-163. |
| [13] | 刘赢, 徐利伟, 采国顺, 卢彦博, 殷国栋, 王建强. 通信拓扑结构随机切换及干扰下的多车队列事件驱动控制[J]. 机械工程学报, 2024, 60(22): 276-290. |
| [14] | 唐小林, 杨剑英, 杨凯, 李文博. 面向无信号灯十字路口的自动驾驶多车协同控制方法研究[J]. 机械工程学报, 2024, 60(20): 217-228. |
| [15] | 叶青, 姜笑, 张垚, 汪若尘, 丁仁凯, 蔡英凤. 考虑响应时滞的磁流变半主动悬架H∞控制与试验研究[J]. 机械工程学报, 2024, 60(18): 276-287. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
