• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (10): 288-304.doi: 10.3901/JME.2025.10.288

• 运载工程 • 上一篇    

扫码分享

基于混合增强智能的人机混合决策策略研究

马文霄1, 孙博华1, 赵帅2, 代凯1, 赵航1, 吴坚1   

  1. 1. 吉林大学汽车底盘集成与仿生全国重点实验室 长春 130022;
    2. 中国汽车技术研究中心有限公司 天津 300000
  • 收稿日期:2024-05-28 修回日期:2025-01-08 发布日期:2025-07-12
  • 作者简介:马文霄,男,1995年出生,博士研究生。主要研究方向为汽车智能化技术,人在回路的人机共驾技术。E-mail:mawx21@mails.jlu.edu.cn;孙博华(通信作者),男,1988年出生,博士,讲师。主要研究方向为汽车智能化技术,人在回路的人机共驾技术。E-mail:sunbohua@jlu.edu.cn
  • 基金资助:
    吉林省自然科学基金(20220101213JC)、国家自然科学基金(52102457)、四川省自然科学基金(23NSFSC4461)和国家自然科学基金(52394261)资助项目。

Research on the Human-machine Hybrid Decision-making Strategy Basing on the Hybrid-augmented Intelligence

MA Wenxiao1, SUN Bohua1, ZHAO Shuai2, DAI Kai1, ZHAO Hang1, WU Jian1   

  1. 1. National Key Laboratory of Automotive Chassis Integration and Bionics, Jilin University, Changchun 130022;
    2. China Automotive Technology & Research Center (CATARC) Co., Ltd., Tianjin 300000
  • Received:2024-05-28 Revised:2025-01-08 Published:2025-07-12

摘要: 为克服驾驶人对自动驾驶系统可接受度弱问题,提高系统在真实道路上的安全性与适应性,提出基于混合增强智能的人机混合决策策略。混合增强智能理论可处理具备“黑-白盒”属性的人机系统交互问题,并解耦混合决策关系。通过驾驶权分配机制与人机决策知识库,实现人机混合决策并充分发挥人机系统“1+1>2”的决策优势。建立考虑驾驶能力与人机轨迹相似度的驾驶权分配机制,分别通过主客观相结合方法与反向传播(Back propagation,BP)神经网络,对驾驶能力进行分类与辨识。建立基于长短期记忆网络(Long short-term memory,LSTM)的自动驾驶子系统决策逻辑,并对其决策性能进行评估。将包含安全性和舒适性的综合评价函数作为人机共驾系统决策评价准则,并通过主观问卷评价驾驶人对系统的可接受度。采用具备人在回路功能的高精度智能驾驶模拟平台,进行试验数据采集与系统性能测试。结果表明,在双车道和环岛场景中施加不同程度驾驶人激励时,所提出的人机混合决策策略性能优于仅驾驶人、全自动驾驶系统以及基于博弈框架的人机共驾系统决策策略性能。

关键词: 车辆工程, 人机共驾, 人机混合决策, 驾驶能力, 混合增强智能

Abstract: In order to overcome weak driver acceptability automated vehicles and improve system safety and adaptability on the real road, a human-machine hybrid decision-making strategy basing on the hybrid-augmented intelligence theory is proposed. The hybrid-augmented intelligence theory aims at dealing with the interaction issue between human and automated systems with “black and white box” property, and decouple their hybrid decision-making relationship. Basing on the driving authority allocation mechanism and human-machine decision-making knowledge base, the proposed strategy can be achieved and its advantages on decision-making of “1+1>2” between human and machine can be fully utilized as well. The driving authority allocation mechanism considering driving ability and human-machine trajectory similarity is established and the driving ability is classified and identified basing on the combination of subjective and objective methods and BP neural network. The decision-making logic of the automated vehicle subsystem is modeled basing on the LSTM network and its corresponding performance is evaluated. The comprehensive evaluation function consisting of the driving safety and comfort is proposed as the decision-making evaluation criterion for the shared control, and drivers’ acceptability is evaluated basing on subjective questionnaires. Using a high-precision intelligent driving simulation platform with human in the loop function for experimental data collection and system performance testing. The results show that when different levels of driver incentives are applied in the two lane and roundabout scenarios, the performance of the proposed human-machine hybrid decision-making strategy is better than that of the driver only, the full auto drive system and the shared control system based on the game framework.

Key words: vehicle engineering, shared control, human-machine hybrid decision-making, driving ability, hybrid-augmented intelligence

中图分类号: