• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (9): 383-401.doi: 10.3901/JME.2025.09.383

• 数字化设计与制造 • 上一篇    

扫码分享

混合增强智能驱动的核电重要厂用水系统设计需求分析研究

吴轩宇1, 娄山河1,2, 洪兆溪1, 司恒远3, 张志峰1, 冯毅雄1,4, 谭建荣1   

  1. 1. 浙江大学流体动力基础件与机电系统全国重点实验室 杭州 310027;
    2. 南洋理工大学机械与宇航工程学院 新加坡 639798 新加坡;
    3. 中广核工程设计有限公司 深圳 518172;
    4. 贵州大学省部共建公共大数据国家重点实验室 贵阳 550025
  • 收稿日期:2024-05-08 修回日期:2024-11-20 发布日期:2025-06-12
  • 通讯作者: 冯毅雄,男,1975年出生,博士,长江学者特聘教授。主要研究方向为现代机械设计理论与方法。E-mail:fyxtv@zju.edu.cn E-mail:fyxtv@zju.edu.cn
  • 作者简介:吴轩宇,男,1998年出生,博士研究生。主要研究方向为产品数字化设计。E-mail:xuanyuwu@zju.edu.cn;娄山河,男,1993年出生,博士,博士后。主要研究方向为机械产品概念设计。E-mail:loushanhe@zju.edu.cn;洪兆溪,女,1991年出生,博士,博士后。主要研究方向为产品设计方法学。E-mail:hzhx@zju.edu.cn;司恒远,男,1982年出生,正高级工程师。主要研究方向为核电厂型号研发。E-mail:sihengyuan@cgnpc.com.cn;张志峰,男,1991年出生,博士研究生。主要研究方向为绿色设计理论与智能调度。E-mail:zhzhfeng@zju.edu.cn;谭建荣,男,1954年出生,博士,教授,中国工程院院士。主要研究方向为CAX方法学、工程图学。E-mail:egi@zju.edu.cn
  • 基金资助:
    国家自然科学基金(52105281,52130501)和浙江省重点研发计划(2023C01214,2024C01207)资助项目。

Research on Design Requirements Analysis for Essential Service Water System of Nuclear Power Driven by Hybrid-augmented Intelligence

WU Xuanyu1, LOU Shanhe1,2, HONG Zhaoxi1, SI Hengyuan3, ZHANG Zhifeng1, FENG Yixiong1,4, TAN Jianrong1   

  1. 1. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027;
    2. School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 Singapore;
    3. China General Nuclear Power Design Co., Ltd., Shenzhen 518172;
    4. State Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025
  • Received:2024-05-08 Revised:2024-11-20 Published:2025-06-12

摘要: 重要厂用水系统是与核安全紧密相关的系统,负责在各种运行工况条件下导出核岛的热量至最终热阱。由于核电厂选址和机型的差异、海洋水文、地理特征、气象等因素对设计方案的影响,重要厂用水系统具备按单设计型工程特性,合理与直观的设计需求分析是后续配置设计的重要基础。针对如何准确地辨识设计需求重要度以消除认知不确定性、规范地建立设计需求模型以确保需求的完备性与可追溯性等问题,提出混合增强智能驱动的重要厂用水系统设计需求分析方法,旨在利用人类高层次的认知能力弥补计算机处理设计需求信息的不足,同时利用计算机的运算能力突破人脑认知过程的推理能力限制。首先,结合考虑人类语言特性的语言激励双向编码器表示预训练模型、模拟大脑前额叶-海马体神经回路的双向长短时记忆网络以及多头注意力机制对设计需求文本语义进行深度挖掘,并将语义特征输入模拟大脑多巴胺奖励系统的奖励调制脉冲神经网络进行设计需求分类。其次,考虑核电专家语义表达的模糊性、群体权重的不确定性,构建基于犹豫模糊集的非线性规划模型识别设计需求重要度并做进一步修正。最后,利用基于模型的系统工程方法建立形式化、结构化的系统模型对设计需求进行统一完备表达。

关键词: 设计需求分析, 混合增强智能, 脉冲神经网络, 犹豫模糊集, 基于模型的系统工程

Abstract: The essential service water system is closely related to nuclear safety and are responsible for exporting heat from the nuclear island to the final heat sink under various operating conditions. Due to the impact of different siting and types of nuclear power plants, ocean hydrology, geographical features, meteorological and other factors on the design scheme, the essential service water system has the design-to-order engineering feature, and reasonable and intuitive design requirement analysis is an important basis for subsequent configuration design. Aiming at identifying the importance of design requirements to eliminate cognitive uncertainty accurately and establishing design requirements models to ensure their completeness and traceability normally, a hybrid-augmented intelligence-driven design requirements analysis method of the essential service water system is proposed. The purpose is to make use of human high-level cognitive ability to make up for the lack of computer processing design requirements information, and to use computer calculating power to break through the reasoning ability of human brain cognitive process. Firstly, combining the pre-training model of linguistically-motivated bi-directional encoder representation from Transformer that considers the human language characteristics, the bi-directional long short-term memory network that simulates the brain's prefrontal and hippocampus neural circuit, and the multi-head attention mechanism, the text semantics of design requirements are deeply mined. The semantic features are input into the reward-modulated spiking neural network that simulates the brain's dopamine reward system to classify design requirements. Secondly, considering the ambiguity of the semantic expression of nuclear power experts and the uncertainty of group weights, a nonlinear programming model based on hesitancy fuzzy sets is constructed to identify the importance of design requirements and make further corrections. Finally, formal and structured system models are established based on the model-based systems engineering method to express design requirements in a unified and complete manner.

Key words: design requirements analysis, hybrid-augmented intelligence, spiking neural network, hesitant fuzzy set, model-based systems engineering

中图分类号: