• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (4): 249-261.doi: 10.3901/JME.2025.04.249

• 运载工程 • 上一篇    

扫码分享

运行工况下车辆动态载荷预测方法研究

赵礼辉1,2,3, 陈沛4, 王震1, 张东东1, 翁硕1, 朱一光5   

  1. 1. 上海理工大学机械工程学院 上海 200093;
    2. 机械工业汽车机械零部件强度与可靠性评价重点实验室 上海 200093;
    3. 上海市新能源汽车可靠性评价专业技术平台 上海 200093;
    4. 泛亚汽车技术中心有限公司 上海 201201;
    5. 上海蔚来汽车有限公司 上海 201800
  • 收稿日期:2024-02-27 修回日期:2024-09-06 发布日期:2025-04-14
  • 作者简介:赵礼辉(通信作者),男,1985年出生,博士,副教授,硕士研究生导师。主要研究方向为车辆可靠性设计与评价、车辆寿命评估与健康监测。E-mail:Pheigoe@126.com
    陈沛,男,1998年出生。主要研究方向为车辆载荷特征分析与建模。E-mail:Pei1_Chen@patac.com.cn
    王震,男,1997年出生,博士研究生。主要研究方向为车辆载荷预测与可靠性评价。E-mail:wangzhenares@yeah.net
  • 基金资助:
    国家重点研发计划(2018YFB0104802)、国家自然科学基金(51705322,52005336)和上海市扬帆计划(19YF1434400)资助项目。

Research on Prediction Method of Vehicle Dynamic Load Under Operating Conditions

ZHAO Lihui1,2,3, CHEN Pei4, WANG Zhen1, ZHANG Dongdong1, WENG Shuo1, ZHU Yiguang5   

  1. 1. School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093;
    2. CMIF Key Laboratory for Strength and Reliability Evaluation of Automotive Structures, Shanghai 200093;
    3. Platform for Reliability Evaluation of New Energy Vehicles in Shanghai, Shanghai 200093;
    4. Pan Asia Technical Automotive Center Co., Ltd., Shanghai 201201;
    5. NIO Nextev Co., Ltd., Shanghai 201800
  • Received:2024-02-27 Revised:2024-09-06 Published:2025-04-14

摘要: 对车辆结构进行实时损伤预测及寿命评估需要各部件的动态载荷信息,然而基于试验方法以及传统时频域内的动载荷识别方法在识别精度、稳定性等方面存在一定的局限。提出一种车辆动态载荷预测方法,通过少量的输入信号,预测后桥、车架、板簧等主要失效风险部件动态载荷,为实现低成本的车辆损伤动态监测和寿命智能管理奠定基础。首先将实采信号经具有自适应噪声的完全集成经验模态分解-排列熵(Complete EEMD with adaptive noise-permutation entropy,CEEMDAN-PE)方式进行降噪处理,以降噪后的轮心加速度信号及位移信号作为输入,基于训练数据和独立测试数据调整超参数以建立最优架构非线性有源自回归(Nonlinear autoregressive models with exogenous inputs,NARX)神经网络模型来实时预测各零部件的应变载荷,进而实现零部件损伤快速计算,并从时域、频域、损伤域等多方面对预测结果进行评价。在此基础上,结合不同路况下的输入输出数据建立NARX-S单路况模型和NARX-M多路况统一模型,通过不同路况下多种模型的对比,表明NARX-S单路况模型具有更高的预测精度,而NARX-M预测精度略低,但具有较好的普遍适应性。

关键词: 动态载荷, 神经网络, 降噪处理, 载荷预测, 损伤计算

Abstract: Real-time damage prediction and life assessment of vehicle structures require dynamic load information of each component. However, the dynamic load identification method based on the test method and the traditional time-frequency domain has certain limitations in terms of identification accuracy and stability. A vehicle dynamic load prediction method is proposed. Through a small amount of input signals, the dynamic load of the main failure risk components such as rear axle, frame and leaf spring is predicted, which lays the foundation for the realization of low-cost dynamic monitoring of vehicle damage and intelligent life management. Firstly, the actual collected signal is subjected to noise reduction processing by CEEMDAN-PE method, and the denoised wheel center acceleration signal and displacement signal are used as input, and hyperparameters are adjusted based on training data and independent test data to establish the optimal architecture NARX neural network model. The strain load of each component is predicted in real time, and the component damage is calculated in real time, and the prediction results are evaluated from the time domain, frequency domain, damage domain and other aspects. On this basis, combining the input and output data under different road conditions to build the NARX-S single road condition model and the NARX-M multi-road condition unified model, the comparison of multiple models under different road conditions shows that the NARX-S single road condition model has higher prediction accuracy, while the NARX-M prediction accuracy is relatively lower, but has better general adaptability.

Key words: dynamic load, neural network, noise reduction processing, load prediction, damage calculation

中图分类号: