• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (4): 239-248.doi: 10.3901/JME.2025.04.239

• 运载工程 • 上一篇    

扫码分享

考虑时变状态参数的车辆纵-垂向运动矢量控制

王法安1,2, 杨全合1, 殷国栋2, 梁晋豪2, 张兆国1   

  1. 1. 昆明理工大学现代农业工程学院 昆明 650500;
    2. 东南大学机械工程学院 南京 211189
  • 收稿日期:2024-02-16 修回日期:2024-09-10 发布日期:2025-04-14
  • 作者简介:王法安,男,1990年出生,博士,讲师,硕士研究生导师。主要研究方向为智能网联汽车控制、智能无人汽车和车辆主动安全控制。E-mail:wfa@kust.edu.cn
    殷国栋(通信作者),男,1976年出生,博士,教授,博士研究生导师。主要研究方向为先进电动汽车、车辆动力学与控制、智能无人汽车和车辆主动安全控制。E-mail:ygd@seu.edu.cn
  • 基金资助:
    国家重点研发计划(2022YFD2002004)和国家自然科学基金(52402497,51975118,52025121,52002066)资助项目。

Integrated Longitudinal and Vertical Motion Control Framework for Distributed Drive Electric Vehicles

WANG Faan1,2, YANG Quanhe1, YIN Guodong2, LIANG Jinhao2, ZHANG Zhaoguo1   

  1. 1. Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming 650500;
    2. School of Mechanical Engineering, Southeast University, Nanjing 211189
  • Received:2024-02-16 Revised:2024-09-10 Published:2025-04-14

摘要: 以分布式电驱动底盘为载体的电动汽车赋予车辆更为灵活和模块化的控制模式。然而,在复杂城市交通场景下,车辆频繁的加减速行为对整车的纵-垂向运动控制提出极大的挑战,为此,旨在利用转矩矢量控制与主动悬架系统的集成提升分布式驱动电动汽车的纵、垂向综合运动性能。首先,面向直线行驶工况,构建半车动力学模型,考虑到轮胎的非线性特性,通过拟合轮胎力,实时求解等效的轮胎侧偏刚度,在此基础上,引入线性参数时变模型解决车速与侧偏刚度带来的系统不确定性问题,从而降低算法优化过程的计算负担;其次,采用模型预测控制将车辆安全、节能及舒适性作为控制目标,其中轮胎滑移率及电机效率、执行器能耗及车辆垂向运动等指标作为目标函数进行优化,控制器求解过程推导了满足系统多性能要求的硬约束条件;选取ECE(联合国欧洲经济委员会汽车法规)作为测试工况,通过快速控制原型试验对所设计的算法进行了验证,结果表明,该控制器能够在保证车辆稳定的基础上,综合提升整车的节能性和舒适性,在连续加速行为下,轮胎最大滑移率较线性二次规划算法可降低约24%,电机效率可以保持在88%以上,同时垂向运动性能也可得到极大改善。

关键词: 分布式驱动电动汽车, 纵-垂向运动协同控制, 轮胎非线性, 线性参数时变模型, 快速控制原型

Abstract: The distributed drive electric vehicles endow a more flexible and modular control mode. However, in complex urban traffic scenarios, the frequent acceleration and deceleration of vehicles poses a great challenge to the longitudinal-vertical motion control of the vehicle. To this end, the aims to use the integration of torque vector control and active suspension system to improve the longitudinal and vertical comprehensive motion performance of distributed drive electric vehicles. Firstly, a half-vehicle dynamic model is constructed for straight driving conditions. Considering the nonlinear characteristics of the tire, the equivalent tire cornering stiffness is solved in real time by fitting the tire force. On this basis, the linear parameter time-varying model is introduced to solve the problem of system uncertainty caused by vehicle speed and cornering stiffness, thus reducing the computational burden of the algorithm optimization process. Secondly, model predictive control is used to control vehicle safety, energy saving and comfort. The tire slip rate, motor efficiency, actuator energy consumption and vehicle vertical motion are optimized as objective functions. The controller solving process derives the hard constraints that meet the multi-performance requirements of the system. To value the effectiveness of the proposed controller, a rapid control prototype platform is established through the real-time simulator. The Economic Commission for Europe is applied as the test condition. The results show that the controller can effectively guarantee the vehicle safety while improving the emerging-saving and comfort. As for the successive acceleration behavior in the straight-ahead driving condition, the maximum tire slip ratio with the proposed controller can be approximately reduced by 24% compared to the linear quadratic regulator. The efficiency of the in-wheel motor is higher than 88%. In addition, the vehicle vertical dynamics performance can also be guaranteed. The maximum vertical displacement of the vehicle center of gravity is reduced about 0.02 m compared to the linear quadratic regulator.

Key words: distributed drive electric vehicles, longitudinal and vertical cooperative motion control, tire nonlinearity, linear-time-varying model, rapid control prototype

中图分类号: