• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (16): 259-272.doi: 10.3901/JME.2025.16.259

• 运载工程 • 上一篇    

扫码分享

考虑多辆前车影响的混动汽车速度规划与节能控制协同优化

张风奇1, 张涛1, 解少博1, 田泽杰1, 胡晓松2   

  1. 1. 长安大学汽车学院 西安 710064;
    2. 重庆大学机械与运载工程学院 重庆 400044
  • 接受日期:2024-10-19 出版日期:2025-05-23 发布日期:2025-05-23
  • 作者简介:张风奇,男,1987年出生,博士,副教授,博士研究生导师。主要研究方向为智能网联汽车、智能驾驶与电气化车辆节能控制。E-mail:fengqizhang@chd.edu.cn;解少博(通信作者),男,1983年出生,博士,教授,博士研究生导师。主要研究方向为车辆动力学、智能网联汽车控制与优化。E-mail:xieshaobo@chd.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(52472398,52072047)

Coordinated Optimization of Speed Planning and Energy-saving Control for Hybrid Vehicles Considering the Influence of Multiple Preceding Vehicles

ZHANG Fengqi1, ZHANG Tao1, XIE Shaobo1, TIAN Zejie1, HU Xiaosong2   

  1. 1. School of Automobile, Chang’an University, Xi’an 710064;
    2. College of Mechanical and Transportation Engineering, Chongqing University, Chongqing 400044
  • Accepted:2024-10-19 Online:2025-05-23 Published:2025-05-23

摘要: 跟车场景中,速度规划与能量管理协同优化有助于提升能效。然而,前方车辆速度波动均会影响主车的速度规划,进而影响跟车安全性、经济性及舒适性等。针对由多辆前车构成的跟车场景,首先,采用极限梯度提升算法预测前方车辆速度,并与多种预测方法进行对比;在此基础上,结合可变车间时距和人工势场法,建立考虑多辆前车影响的可变车间时距策略,进而以车辆安全性、舒适性和经济性等为目标函数,运用模型预测控制实施车速规划与能量管理协同优化。最后,对分层控制、协同控制以及不同车间时距策略的协同控制进行综合分析,结果显示,与固定车间时距策略相比,采用可变车间时距的协同控制策略不仅能够优化主车速度,而且可令用车成本减少4.3%。

关键词: 混动汽车, 跟车场景, 速度规划, 能量管理, 协同优化

Abstract: Collaborative optimization of speed planning and energy management in car following scenarios can help improve energy efficiency. However, fluctuations in the speed of vehicles ahead can affect the speed planning of the ego-vehicle and further affect the safety, economy, and comfort of following car. For the following scenario consisting of multiple preceding vehicles, firstly, the eXtreme Gradient Boosting is used to predict the speed of the preceding vehicle by comparing with other prediction methods. On this basis, combined with variable workshop time distance and artificial potential field method, a variable workshop time distance strategy considering the influence of multiple preceding vehicles is established. Then, the objective functions is constructed considering vehicle safety, comfort, and economy, and model predictive control is used to implement coordinated optimization of vehicle speed planning and energy management. Finally, a comprehensive analysis was conducted on hierarchical control, collaborative control, and collaborative control with different workshop time distance strategies. The results show that compared with the fixed workshop time distance strategy, the collaborative control strategy using variable workshop time distance not only optimizes the speed of the ego vehicle, but also reduces the vehicle costs by 4.3%.

Key words: hybrid electric vehicles, car following scenario, speed planning, energy management, collaborative optimization

中图分类号: