• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (14): 243-260.doi: 10.3901/JME.2025.14.243

• 运载工程 • 上一篇    

扫码分享

基于轮组制动力异相位波动重构的智能多轴半挂汽车制动防抱死控制研究

武秀恒1, 孙亮1, 赵晋海1, 李亮2, 王翔宇2, 宋正河1   

  1. 1. 中国农业大学工学院 北京 100083;
    2. 清华大学汽车安全与节能国家重点实验室 北京 100084
  • 收稿日期:2024-07-21 修回日期:2025-01-09 发布日期:2025-08-25
  • 作者简介:武秀恒,男,1990年出生,博士,副教授。主要研究方向为车辆系统动力学与控制、非线性系统时频分析与控制、智能车辆线控底盘等。E-mail:wxh599@cau.edu.cn;孙亮,男,1997年出生,硕士研究生。主要研究方向为商用车气压线控制动系统及整车动力学与稳定性控制。E-mail:sunliang16688@163.com;赵晋海(通信作者),男,1997年出生,博士研究生。主要研究方向为商用车气压线控制动系统及整车动力学与稳定性控制。E-mail:zhaojinhai@cau.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(51905293)。

Research on Anti-lock Braking Control for Intelligent Multiple-axis Semi-trailer Based on Wheel Group Braking Force Different-phase Fluctuation Reconstruction

WU Xiuheng1, SUN Liang1, ZHAO Jinhai1, LI Liang2, WANG Xiangyu2, SONG Zhenghe1   

  1. 1. College of Engineering, China Agricultural University, Beijing 100083;
    2. State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084
  • Received:2024-07-21 Revised:2025-01-09 Published:2025-08-25

摘要: 常规汽车制动防抱死策略通常重点关注最大化纵向制动力,难以同时优化轮胎侧向力,因此无法进一步提升制动防抱死过程中整车侧向稳定性。智能半挂汽车中多轮胎组成的轮组可以实现轮组侧纵向制动力的解耦调控,为继续优化其侧向稳定性提供硬件基础。基于各轮独立制动系统架构,提出一种轮组内各车轮制动力波动耦合重构的制动防抱死策略,并设计一种基于滑移率控制的制动防抱死系统分层控制器。上层控制器先通过路面识别算法判断路面附着条件以获得当前路面最优滑移率,再通过所设计的多轮重构制动规则得到轮组内不同车轮的目标滑移率,下层应用滑模控制器对各车轮制动力进行独立控制实现轮组内各车轮异相位协同制动。最后通过Simulink-Trucksim联合仿真及硬件在环试验平台进行验证。结果表明与常规ABS控制策略相比异相位波动耦合策略可在制动防抱死过程中始终保持较大侧向力,使得牵引车和半挂车横摆角速度波动范围约降低25.1%和11.2%,质心侧偏角降低15.2%和25.6%,侧向加速度降低29.8%和33.2%,验证所提出的制动防抱死策略对于半挂汽车紧急制动过程侧向稳定性提升的有效性。

关键词: 多轴重载半挂汽车, 完全分布式独立制动系统, 制动防抱死策略, 参数估计, 滑移率控制

Abstract: Typically, traditional vehicle ABS strategy only focuses on maximizing longitudinal braking force, which makes it difficult to take into account the lateral force of the tire at the same time, thus making it difficult to ensure vehicle lateral stability during the ABS process. The multi-tire composition of the intelligent semi-trailer vehicle can independently adjust the longitudinal and lateral braking forces of the wheel group, providing conditions for further improving its lateral stability. Based on the architecture of independently controlled braking systems for each wheel, a braking ABS strategy with coupled reconstruction of braking force fluctuations within wheel group is proposed. The upper-level controller first judges the road adhesion condition through the road recognition algorithm to obtain the optimal slip rate of the current road surface, and then obtains the target slip rate through the formulated braking rule. The lower-level controller independently controls the braking of each wheel to achieve asynchronous braking within the wheel group. Finally, experimental validation was conducted through Simulink-TruckSim co-simulation and hardware-in-the-loop testing platform. The results show that compared with the conventional ABS control strategy, the anti-lock strategy can maintain large lateral force during the braking process, reducing the yaw angular velocity range of tractor and semi-trailers by 25.1% and 11.2%, the center of gravity lateral angle by 15.2% and 25.6%, the lateral acceleration by 29.8% and 33.2%, These results confirm the effectiveness of the proposed ABS strategy in enhancing lateral stability during emergency braking for semi-trailer trucks.

Key words: fully distributed braking system, anti-lock braking control strategy, multi-axle semi-trailer, parameter estimation, slip rate control

中图分类号: