机械工程学报 ›› 2025, Vol. 61 ›› Issue (10): 36-65.doi: 10.3901/JME.2025.10.036
• 特邀专栏:高端装备表面强化防护与再制造 • 上一篇
赵立存1, 王志远1, 刘洋1, 姜巍1, 刘金娜2
收稿日期:
2024-08-29
修回日期:
2025-01-08
发布日期:
2025-07-12
作者简介:
赵立存,男,2000年出生。主要研究方向为表面工程与摩擦学。E-mail:zhaolc1618@163.com;王志远(通信作者),男,1994年出生,博士,讲师,硕士研究生导师。主要研究方向为表面工程与摩擦学。E-mail:wangzhiyaun@hrbust.edu.cn刘洋,男,1981年出生,博士,教授,博士研究生导师。主要研究方向为封装材料开发。E-mail:yang_liu@hrbust.edu.cn
基金资助:
ZHAO Licun1, WANG Zhiyuan1, LIU Yang1, JIANG Wei1, LIU Jinna2
Received:
2024-08-29
Revised:
2025-01-08
Published:
2025-07-12
摘要: 随着科技的发展,先进装备表面防护问题日益突出,尤其针对高精尖零部件表面的防护技术研究更是困扰众多研究人员的关键科学问题之一。现如今众多技术进步都依赖于创造具有增强性能的新型复合材料,其中磁控溅射技术由于对材料表面适配性强,元素选择多样,对于各类先进装备表面防护薄膜制备提供一个新的控制维度。因此,为进一步总结先进装备内部高精尖零部件防护需求,致力于改善装备表面防护难题,综述了磁控溅射薄膜沉积技术的最新进展,一方面,针对磁控溅射薄膜沉积过程变化机理、形成机制进行综述,明确靶材溅射对基体材料的性能影响,进一步分析时空间维度上薄膜沉积的可靠性;另一方面,详细论述各类装备表面防护薄膜的应用特色及成形行为。最后,结合磁控溅射镀膜技术的工艺特性,对磁控溅射薄膜沉积过程中的通量特征进行深入分析,并探讨影响薄膜沉积状态的微观结构、表面特性等因素。综上,本文总结先进装备表面磁控溅射镀膜技术的应用机理,并从磁控溅射镀膜组织结构、力学性能、服役性能的角度出发,结合磁控溅射镀膜技术的典型应用,综述了磁控溅射镀膜技术的发展趋势,以及对应用前景的优势和存在问题进行总结,并对磁控溅射镀膜技术的未来先进薄膜体系进行评估和展望。
中图分类号:
赵立存, 王志远, 刘洋, 姜巍, 刘金娜. 先进装备表面磁控溅射技术复合防护体系研究进展[J]. 机械工程学报, 2025, 61(10): 36-65.
ZHAO Licun, WANG Zhiyuan, LIU Yang, JIANG Wei, LIU Jinna. Research Progress on Composite Protection of Advanced Equipment Surfaces Using Magnetron Sputtering Technology[J]. Journal of Mechanical Engineering, 2025, 61(10): 36-65.
[1] SOLTANALIPOUR M,KHALIL-ALLAFI J,MEHRVARZ A. Study of tantalum-based coatings magnetron sputtered on NiTi alloy in argon and argon/nitrogen atmosphere[J]. Ceramics International,2024,50(3):4994-5006. [2] BRAUER G,SZYSZKA B,VERGOHL M,et al. Magnetron sputtering-milestones of 30 years[J]. Vacuum,2010,84(12):1354-1359. [3] PALMERO A,MARTIN N. Advanced strategies in thin films engineering by Magnetron sputtering[J]. Coatings,2020,10(4):419. [4] LI G,MA F,LIU P,et al. Review of micro-arc oxidation of titanium alloys:Mechanism,properties and applications[J]. Journal of Alloys and Compounds,2023,948:169773. [5] LIU S H,TRELLES J P,LI C J,et al. A review and progress of multiphase flows in atmospheric and low pressure plasma spray advanced coating[J]. Materials Today Physics,2022,27:100832. [6] DEZFULI S M,SABZI M. Deposition of ceramic nanocomposite coatings by electroplating process:A review of layer-deposition mechanisms and effective parameters on the formation of the coating[J]. Ceramics International,2019,45(17):21835-21842. [7] CALDERON VELASCO S,CAVALEIRO A,CARVALHO S. Functional properties of ceramic-Ag nanocomposite coatings produced by magnetron sputtering[J]. Prog. Mater. Sci.,2016,84:158-191. [8] TIAN J,ZHANG H,QIN J,et al. Microstructures and hydrogen evolution reaction performance of Ru-M(M= Cu,Ni and Nb) system by magnetron sputtering:The mixing enthalpy effect[J]. Journal of Alloys and Compounds,2024,1002:175464. [9] 程志强,李春燕,高凯雄. 真空宽载下二硫化钼/碳复合薄膜的超低磨损机制[J]. 中国表面工程,2024,37(3):175-184.CHENG Zhiqiang,LI Chunyan,GAO Kaixiong. Ultra-low wear mechanism of molybdenum disulfide/carbon composite films under vacuum wide load[J]. China Surface Engineering,2024,37(3):175-184. [10] 孙繁新,史彦斌,蒲吉斌,等. 苛刻空间环境下固体润滑涂层在谐波齿轮减速器表面的服役性能评价[J]. 中国表面工程,2023,36(5):76-87. SHUN Fanxin,SHI Yanbin,PU Jibin,et al. Service performance evaluation of solid-lubrication coating on harmonic gear reducer surface in harsh space environment[J]. China Surface Engineering,2023,36(5):76-87. [11] AHN K J,PARK J H,SHIN B K,et al. Effect of sputtering power on the properties of ZnO:Ga transparent conductive oxide films deposited by pulsed DC magnetron sputtering with a rotating cylindrical target[J]. Applied Surface Science,2013,271:216-222. [12] WANG Y H,RAHMAN K H,WU C C,et al. A review on the pathways of the improved structural characteristics and photocatalytic performance of titanium dioxide (TiO2) thin films fabricated by the magnetron-sputtering technique[J]. Catalysts,2020,10:598. [13] RECK K A,BULUT Y,XU Z,et al. Early-stage silver growth during sputter deposition on SiO2 and polystyrene-comparison of biased DC magnetron sputtering,high-power impulse magnetron sputtering (HiPIMS) and bipolar HiPIMS[J]. Applied Surface Science,2024,666:160392. [14] HNILICA J,KLEIN P,UČÍK M,et al. On direct-current magnetron sputtering at industrial conditions with high ionization fraction of sputtered species[J]. Surface and Coatings Technology,2024,487:131028. [15] BRAHIM S,FERNÁNDEZ A,BRAULT P,et al. DC magnetron sputter deposition in pure helium gas:Formation of porous films or gas/solid nanocomposite coatings[J]. Vacuum,2024,224:113184. [16] 周江. 磁控溅射镀膜的原理与故障研究[J]. 科技展望,2015,25(23):135. ZHOU Jiang. Principles and fault research of magnetron sputtering coating[J]. Science & Technology Outlook,2015,25(23):135. [17] JUNG Y S,SEO J Y,LEE D W,et al. Influence of DC magnetron sputtering parameters on the properties of amorphous indium zinc oxide thin film[J]. Thin Solid Films,2003,445(1):63-71. [18] 郑建云,郝俊英,刘小强,等. 直流磁控溅射制备TiAlCN薄膜及其性能研究[J]. 摩擦学学报,2013,33(1):85-90. ZHENG Jianyun,HAO Junying,LIU Xiaoqiang,et al. Study on the preparation of TiAlCN films by DC magnetron sputtering and their properties[J]. Tribology,2013,33(1):85-90. [19] ROBB A J,DUCA Z A,WHITE N,et al. Influence of oxygen on the optical and electrical properties of magnetron-sputtered indium tin oxide thin films at ambient temperature[J]. Thin Solid Films,2024,788:140152. [20] MOŚCICKI T,PSIUK R,JARZĄBEK D,et al. Effect of titanium and deposition parameters on microstructure and mechanical properties of W-Ti-B thin films deposited by high power impulse magnetron sputtering[J]. Surface and Coatings Technology,2024,485:130915. [21] KONDAIAH P,SEKHAR M C,CHANDRA S V J,et al. Influence of substrate bias voltage on the physical,electrical and dielectric properties of RF magnetron sputtered TiO2 films[C]//IOP Conference Series:Materials Science and Engineering. IOP Publishing,2012,30(1):012005. [22] NEZAR S,SAOULA N,SALI S,et al. Properties of TiO2 thin films deposited by RF reactive magnetron sputtering on biased substrates[J]. Applied Surface Science,2017,395:172-179. [23] SREEDHAR A,JUNG H,KWON J H,et al. Effect of ion beam assistance on Cu-doped ZnO thin films deposited by simultaneous RF and DC magnetron sputtering[J]. Ceramics International,2016,42(2):3064-3071. [24] DAI M J,LIN S S,SHI Q,et al. Transparent conductive p-type cuprous oxide films in Vis-NIR region prepared by ion-beam assisted DC reactive sputtering[J]. Coatings,2020,10(5):473. [25] BAH S T,BA C O F,D'AUTEUIL M,et al. Fabrication of TaOxNy thin films by reactive ion beam-assisted AC double magnetron sputtering for optical applications[J]. Thin Solid Films,2016,615:351-357. [26] DAI M J,LIN S S,SHI Q,et al. Transparent conductive p-type cuprous oxide films in Vis-NIR region prepared by ion-beam assisted DC reactive sputtering[J]. Coatings,2020,10(5):473. [27] WANG W,ZHENG S,PU J,et al. Microstructure,mechanical and tribological properties of Mo-VN films by reactive magnetron sputtering[J]. Surface and Coatings Technology,2020,387:125532. [28] PUSTOVALOVA A,BOYTSOVA E,AUBAKIROVA D,et al. Formation and structural features of nitrogen-doped titanium dioxide thin films grown by reactive magnetron sputtering[J]. Applied Surface Science,2020,534:147572. [29] VON FIEANDT K,PASCHALIDOU E M,SRINATH A,et al. Multi-component (Al,Cr,Nb,Y,Zr) N thin films by reactive magnetron sputter deposition for increased hardness and corrosion resistance[J]. Thin Solid Films,2020,693:137685. [30] AMMENDOLA M,ARONSON B,FOURSPRING P,et al. Evaluation of chromium coatings deposited by standard and bipolar high-power impulse magnetron sputtering (HiPIMS & B-HiPIMS) for nuclear power applications[J]. Surface and Coatings Technology,2024,485:130835. [31] VERMA P C,MISHRA S K. Microstructure,mechanical and electrochemical behavior of magnetron-sputtered carbothermic reduced iron-boride ceramic coatings[J]. Ceramics International,2024,50(19):36703-36716. [32] HELMERSSON U,LATTEMANN M,BOHLMARK J,et al. Ionized physical vapor deposition (IPVD):A review of technology and applications[J]. Thin Solid Films,2006,513(1-2):1-24. [33] SARAKINOS K,ALAMI J,KONSTANTINIDIS S. High power pulsed magnetron sputtering:A review on scientific and engineering state of the art[J]. Surface and Coatings Technology,2010,204(11):1661-1684. [34] RAMAN P,SHCHELKANOV I A,MCLAIN J,et al. High power pulsed magnetron sputtering:A method to increase deposition rate[J]. Journal of Vacuum Science & Technology A,2015,33:031304. [35] SAMUELSSON M,LUNDIN D,JENSEN J,et al. On the film density using high power impulse magnetron sputtering[J]. Surface and Coatings Technology,2010,205(2):591-596. [36] XIN Y,ZHANG W,GAO Z,et al. Preparation of ZnGa2O4-based deep ultraviolet photodetector with high photodetectivity by magnetron sputtering[J]. Vacuum,2024,224:113165. [37] 李琪刚,陈仁德,李昊,等. 同步脉冲偏压对HiPIMS制备DLC薄膜结构和性能的影响[J/OL]. 中国表面工程. https://link.cnki.net/urlid/11.3905.TG.20241219.1414.002. LI Qigang,CHEN Rende,LI Hao,et al. Effect of synchronous pulsed-bias on structure and mechanical properties of DLC films by HiPIMS technique[J/OL]. China Surface Engineering. https://link.cnki.net/urlid/11.3905.TG.20241219.1414.002. [38] GRUBER G C,LASSNIG A,ZAK S,et al. Thermal stability of MoNbTaTiW,MoNbTaVW and CrMoNbTaW thin films deposited by high power impulse magnetron sputtering[J]. Surface and Coatings Technology,2023,454:129189. [39] DU H,SHU R,BOYD R,et al. Evolution of microstructure and properties of TiNbCrAlHfN films grown by unipolar and bipolar high-power impulse magnetron co-sputtering:The role of growth temperature and ion bombardment[J]. Surface and Coatings Technology,2023,459:129389. [40] TSAI Y N,CHEN H Y,TSENG I H,et al. Adhesive properties of deposited Cu films on colorless polyimide using high power impulse magnetron sputtering system[J]. Surface and Coatings Technology,2024,484:130710. [41] KARAZMOUDEH N J,SOLTANIEH M,HASHEMINIASARI M. Structural and photocatalytic properties of undoped and Zn-doped CuO thin films deposited by reactive magnetron sputtering[J]. Journal of Alloys and Compounds,2023,947:169564. [42] WANG D,QU Z,WANG Y,et al. Role of Cu-doping concentration in the synthesis,microstructure and properties of Ag thin films via magnetron co-sputtering method[J]. Vacuum,2023,216:112437. [43] SOLOVYEV A A,SEMENOV V A,OSKIRKO V O,et al. Properties of ultra-thin Cu films grown by high power pulsed magnetron sputtering[J]. Thin Solid Films,2017,631:72-79. [44] GRUDNIEWSKI T,MICHALUK E. Research on the possibility of controlling the growth of thin copper layers deposited by DC magnetron sputtering[J]. Heliyon,2023,9(4):e14936. [45] LIM J W,MIMURA K,ISSHIKI M. Thickness dependence of resistivity for Cu films deposited by ion beam deposition[J]. Applied Surface Science,2003,217(1-4):95-99. [46] CHIANG K T K,WEI R. Growth morphology and corrosion resistance of magnetron sputtered Cr films[J]. Surface and Coatings Technology,2011,206(7):1660-1665. [47] MERCS D,PERRY F,BILLARD A. Hot target sputtering:A new way for high-rate deposition of stoichiometric ceramic films[J]. Surface and Coatings Technology,2006,201(6):2276-2281. [48] SIDELEV D V,BLEYKHER G A,BESTETTI M,et al. A comparative study on the properties of chromium coatings deposited by magnetron sputtering with hot and cooled target[J]. Vacuum,2017,143:479-485. [49] LOZANOVA V,LALOVA A,SOSEROV L,et al. Optical and electrical properties of very thin chromium films for optoelectronic devices[C]//Journal of Physics:Conference Series. IOP Publishing,2014,514(1):012003. [50] BELOSLUDTSEV,SYTCHKOVA A,BALTRUSAITIS K,et al. Growth of magnetron-sputtered ultrathin chromium films:In situ monitoring and ex situ film properties[J]. Coatings,2023,13(2):347. [51] XIE Q,SUN G,FU Z,et al. Comparative study of titanium carbide films deposited by plasma-enhanced and conventional magnetron sputtering at various methane flow rates[J]. Ceramics International,2023,49(15):25269-25282. [52] CHAWLA V,Jayaganthan R,Chawla A K,et al. Morphological study of magnetron sputtered Ti thin films on silicon substrate[J]. Materials Chemistry and Physics,2008,111(2-3):414-418. [53] WU B,YU Y,WU J,et al. Tailoring of titanium thin film properties in high power pulsed magnetron sputtering[J]. Vacuum,2018,150:144-154. [54] CHEN B,ZHANG X L,ZHANG W B,et al. Electrochemical pseudocapacitance performance of high entropy carbide (FeCoCrMnNi) C film by magnetron sputtering technology[J]. Ceramics International,2024,50(13):23302-23314. [55] LIU W S,WU S H,BALAJI G,et al. Optimization of high-quality gallium nitride thin films deposited on silicon substrates with an aluminum nitride buffer layer through radio-frequency magnetron sputtering[J]. Vacuum,2024:113352. [56] SRINATH A,VON FIEANDT K,FRITZE S,et al. Near-surface analysis of magnetron sputtered AlCrNbYZrNx high entropy materials resolved by HAXPES[J]. Applied Surface Science,2024,666:160349. [57] MUNITZ A,KAUFMAN M J,NAHMANDY M,et al. Microstructure and mechanical properties of heat treated Al1.25CoCrCuFeNi high entropy alloys[J]. Materials Science and Engineering:A,2018,714:146-159. [58] YE Y F,WANG Q,LU J,et al. High-entropy alloy:Challenges and prospects[J]. Materials Today,2016,19(6):349-362. [59] MACDONALD B E,FU Z,ZHENG B,et al. Recent progress in high entropy alloy research[J]. JOM,2017,69:2024-2031. [60] ZHANG Y,LU Z P,MA S G,et al. Guidelines in predicting phase formation of high-entropy alloys[J]. MRS Communications,2014,4(2):57-62. [61] ZHOU Y J,ZHANG Y,WANG F J,et al. Phase transformation induced by lattice distortion in multiprincipal component CoCrFeNiCuxAl1−x solid-solution alloys[J]. Applied Physics Letters,2008,92(24):241917. [62] KE G Y,CHEN S K,HSU T,et al. FCC and BCC equivalents in as-cast solid solutions of AlxCoyCrzCu0. 5 FevNiw high-entropy alloys[C]//Annales De Chimie (Paris. 1914). 2006,31(6):669-683. [63] NGUYEN T,HUANG M,LI H,et al. Effect of Al content on microstructure and mechanical properties of as-cast AlxFeMnNiCrCu0.5 high-entropy alloys[J]. Materials Science and Engineering:A,2022,832:142495. [64] TONG C J,CHEN Y L,YEH J W,et al. Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements[J]. Metallurgical and Materials Transactions A,2005,36:881-893. [65] ZHANG M,DENG C. Temperature-dependence of magnetron sputtered NiFe films:Structure,morphology,optical,electrical and OER catalytic properties[J]. Applied Surface Science,2024,653:159317. [66] AMMENDOLA M,ARONSON B,FOURSPRING P,et al. Evaluation of chromium coatings deposited by standard and bipolar high-power impulse magnetron sputtering (HiPIMS & B-HiPIMS) for nuclear power applications[J]. Surface and Coatings Technology,2024,485:130835. [67] GHAEMI M,LOPEZ-CAZALILLA A,SARAKINOS K,et al. Growth of Nb films on Cu for superconducting radio frequency cavities by direct current and high power impulse magnetron sputtering:A molecular dynamics and experimental study[J]. Surface and Coatings Technology,2024,476:130199. [68] CEMIN F,JIMENEZ M J M,LEIDENS L M,et al. A thermodynamic study on phase formation and thermal stability of AlSiTaTiZr high-entropy alloy thin films[J]. Journal of Alloys and Compounds,2020,838:155580. [69] KARTHIKEYA S,ATTA S,RAO K V K,et al. Optical behaviour of magnetron sputtered nano-hilled TiN coatings[J]. Optical Materials,2024,155:115838. [70] YANG C,WANG R,JIANG B,et al. Effect of target power ratio on microstructure and deposition rate of TiN film deposited by dual pulse power magnetron sputtering[J]. Ceramics International,2022,48(20):29652-29658. [71] LI Hua,LI Liuhe,WANG Xiaoting,et al. Effect of bias voltage on the erosion performance of TiAlSiN coatings on TC6 substrate by high power impulse magnetron sputtering[J]. Surface and Coatings Technology,2024,477:130263. [72] KOBAYASHI K. First-principles study of the electronic properties of transition metal nitride surfaces[J]. Surface Science,2001,493(1-3):665-670. [73] KUMAR GANGWAR A,GODIWAL R,VARSHNEY U,et al. Temperature-dependent PN switching for highly selective CO gas sensing based on mixed phases of magnetron sputtered (p) SnO-(n) SnO2 thin films[J]. Applied Surface Science,2024,655:159607. [74] LIU W,JIAO D,DING H,et al. Corrosion resistance of CrN film deposited by high-power impulse magnetron sputtering on SS304 in a simulated environment for proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy,2023,48(66):25901-25917. [75] LIU L,RUAN Q,WU Z,et al. Hard and tough CrN coatings strengthened by high-density distorted coherent grain boundaries[J]. Journal of Alloys and Compounds,2022,894:162139. [76] GENG D,XU Y X,WANG Q. Hybrid deposition of Cr-O/Al-O hard coatings combining cathodic arc evaporation and high power impulse magnetron sputtering[J]. Surface and Coatings Technology,2023,456:129235. [77] LEVIN I,BENDERSKY L A,BRANDON D G,et al. Cubic to monoclinic phase transformations in alumina[J]. Acta Materialia,1997,45(9):3659-3669. [78] LUAN J,LU H,XU J,et al. Exploring tribological characteristics of ZrN-MoSN composite films fabricated via RF magnetron sputtering:Insights from microstructure and performance analysis[J]. Surface and Coatings Technology,2024,484:130813. [79] NIU X,DONG G,WEI S,et al. Effects of nitrogen flow rate on the microstructure and mechanical and tribological properties of TiAlN films prepared via reactive magnetron sputtering[J]. Ceramics International,2023,49(12):19885-19894. [80] NOKIAEW B,WANGMOOKLANG L,NIYOMSOAN S,et al. Preparation of transparent alumina thin films deposited by RF magnetron sputtering[J]. Journal of Metals,Materials and Minerals,2021,31(2):96-103. [81] ZHANG X,ZHU J,ZHANG L,et al. Crystallization of alumina films deposited by reactive magnetron sputtering with resputtering technique at low temperature[J]. Surface and Coatings Technology,2013,228:S393-S396. [82] BELKIND A,FREILICH A,SONG G,et al. Mid-frequency reactive sputtering of dielectrics:Al2O3[J]. Surface and Coatings Technology,2003,174:88-93. [83] BANAS-GAC J,RADECKA M,CZAPLA A,et al. Surface and interface properties of TiO2/CuO thin film bilayers deposited by RF reactive magnetron sputtering[J]. Applied Surface Science,2023,616:156394. [84] DREVET R,SOUČEK P,MAREŠ P,et al. Multilayer thin films of aluminum oxide and tantalum oxide deposited by pulsed direct current magnetron sputtering for dielectric applications[J]. Vacuum,2023,210: 111870. [85] BUKAUSKAS V,KACIULIS S,MEZZI A,et al. Effect of substrate temperature on the arrangement of ultra-thin TiO2 films grown by DC-magnetron sputtering deposition[J]. Thin Solid Films,2015,585:5-12. [86] WIATROWSKI A,MAZUR M,OBSTARCZYK A,et al. Comparison of the physicochemical properties of TiO2 thin films obtained by magnetron sputtering with continuous and pulsed gas flow[J]. Coatings,2018,8(11):412. [87] FOUAD S S,BARÁDACS E,NABIL M,et al. Linearization and characterization of the Wemple-DiDomenico model of ZnO/Ni/ZnO tri-layer thin films prepared by ALD and DC magnetron sputtering[J]. Journal of Alloys and Compounds,2024,990:174348. [88] ISMAIL A,ABDULLAH M J. The structural and optical properties of ZnO thin films prepared at different RF sputtering power[J]. Journal of King Saud University-Science,2013,25(3):209-215. [89] MAZUR M,OBSTARCZYK A,POSADOWSKI W,et al. Investigation of the microstructure,optical,electrical and nanomechanical properties of ZnOx thin films deposited by magnetron sputtering[J]. Materials,2022,15(19):6551. [90] GONÇALVES R S,BARROZO P,CUNHA F. Optical and structural properties of ZnO thin films grown by magnetron sputtering:Effect of the radio frequency power[J]. Thin Solid Films,2016,616:265-269. [91] 李超,马国佳,孙刚,等. 基体偏压对316L不锈钢表面多层Ti-DLC薄膜摩擦及腐蚀行为的影响[J]. 中国表面工程,2023,36(1):189-199. LI Chao,MA Guojia,SUN Gang,et al. Effects of substrate bias voltage on friction and corrosion behavior of multilayer Ti-DLC film on the surface of 316L stainless steel[J]. China Surface Engineering,2023,36(1):189-199. [92] AIJAZ A,SARAKINOS K,LUNDIN D,et al. A strategy for increased carbon ionization in magnetron sputtering discharges[J]. Diamond and Related Materials,2012,23:1-4. [93] GODINHO V,CABALLERO-HERNÁNDEZ J,LACROIX B,et al. Microstructural evolution and properties of He-charged a-Si coatings prepared by magnetron sputtering[J]. Applied Surface Science,2024,643:158681. [94] REINIG P,ALEX V,FENSKE F,et al. Pulsed DC magnetron-sputtering of microcrystalline silicon[J]. Thin Solid Films,2002,403:86-90. [95] SHEKOOFA O,WANG J,LI D,et al. Investigation of microcrystalline silicon thin film fabricated by magnetron sputtering and copper-induced crystallization for photovoltaic applications[J]. Applied Sciences,2020,10(18):6320. [96] LIU M,YANG Y,MAO Q,et al. Influence of radio frequency magnetron sputtering parameters on the structure and performance of SiC films[J]. Ceramics International,2021,47(17):24098-24105. [97] SALADUKHIN I A,ABADIAS G,UGLOV V,et al. On the stability of multilayer ZrN/SiNx and CrN/SiNx coatings formed by magnetron sputtering to high-temperature oxidation[J]. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques,2020,14:351-358. [98] YOU D,JIANG Y,ZHAO Y,et al. Widely tunable refractive index silicon nitride films deposited by ion-assisted pulsed DC reactive magnetron sputtering[J]. Optical Materials,2023,136:113354. [99] CHANG J C,TSENG E N,LO Y L,et al. HiPIMS-grown AlN buffer for threading dislocation reduction in DC-magnetron sputtered GaN epifilm on sapphire substrate[J]. Vacuum,2023,217:112553. [100] OSKIRKO V O,ZAKHAROV A N,GRENADYOROV A S,et al. The influence of pulse duration and duty cycle on the energy flux to the substrate in high power impulse magnetron sputtering[J]. Vacuum,2023,216:112459. [101] LEE C Y,LIN S J,YEH J W. (AlCrNbSiTi)N/TiN multilayer films designed by a hybrid coating system combining high-power impulse magnetron sputtering and cathode arc deposition[J]. Surface and Coatings Technology,2023,468:129757. [102] DE MONTEYNARD A,LUO H,CHEHIMI M,et al. The structure,morphology,and mechanical properties of Ta-Hf-C coatings deposited by pulsed direct current reactive magnetron sputtering[J]. Coatings,2020,10(3):212. [103] MA B,YUAN H,HE Z,et al. Microstructure and mechanical properties of magnetron sputtering TiN-Ni nanocrystalline composite films[J]. Coatings,2023,13(11):1902. [104] JANSSON A,MEDINA L Z,LAUTRUP L,et al. Magnetron sputtering of the high entropy alloy CoCrFeMnNi on 316L:Influence of substrate grain orientations[J]. Surface and Coatings Technology,2023,466:129612. [105] PLESKUNOV P,KOŠUTOVÁ T,PROTSAK M,et al. A multi-timescale model predicts the spherical-to-cubic morphology crossover of magnetron-sputtered niobium nanoparticles[J]. Applied Surface Science,2023,639:158235. [106] XIN T,ZHANG G,WANG T,et al. Effect of Cr addition on oxidation and tribological properties of MoB2-z films by magnetron sputtering[J]. Surface and Coatings Technology,2024,477:130314. [107] SALVALAGLIO M,BACKOFEN R,VOIGT A. Thin-film growth dynamics with shadowing effects by a phase-field approach[J]. Phys. Rev. B,2016,94:235432. [108] XIN Y,GAO Z,SHANG X,et al. Effect of thermal annealing on the structural and optical properties of ZnGa2O4 films deposited on sapphire by magnetron sputtering[J]. Journal of Alloys and Compounds,2023,933:167760. [109] LOU B S,LIN R Z,LI C L,et al. Fabrication of (TiZrNbSiMo)1-xNx high entropy alloy coatings using a high power impulse magnetron sputtering technique:Effects of nitrogen addition[J]. Surface and Coatings Technology,2024,483:130772. [110] KIM Y S,PARK H J,KIM Y S,et al. Influence of the gas flow rate on the crack formation of AlCoCrNi high-entropy metallic film fabricated using magnetron sputtering[J]. Coatings,2024,14(1):144. [111] OSINGER B,DONZEL-GARGAND O,FRITZE S,et al. Structural and mechanical properties of magnetron sputtered (NbxMo1-x) C thin films[J]. Vacuum,2024,224:113146. [112] DUTRA P R,AMORIM C C,GASTELOIS P L,et al. Carbonaceous-TiO2 composite photocatalysts through reactive direct current magnetron sputtering on powdered graphene for environmental applications[J]. Thin Solid Films,2024,792:140248. [113] XIN T,ZHANG G,WANG T,et al. Effect of Cr addition on oxidation and tribological properties of MoB2-z films by magnetron sputtering[J]. Surface and Coatings Technology,2024,477:130314. [114] FENG X B,ZHANG J Y,WANG Y Q,et al. Size effects on the mechanical properties of nanocrystalline NbMoTaW refractory high entropy alloy thin films[J]. International Journal of Plasticity,2017,95:264-277. [115] TSAI D C,CHANG Z C,KUO B H,et al. Wide variation in the structure and physical properties of reactively sputtered (TiZrHf)N coatings under different working pressures[J]. Journal of Alloys and Compounds,2018,750:350-359. [116] YUAN L,WANG F,CHEN H,et al. Improvement of the mechanical properties and corrosion resistance of CSS-42L steel with a novel TiAlMoNbW nitrid film deposition[J]. Coatings,2022,12(8):1048. [117] DREVET R,SOUČEK P,MAREŠ P,et al. Aluminum tantalum oxide thin films deposited at low temperature by pulsed direct current reactive magnetron sputtering for dielectric applications[J]. Vacuum,2024,221:112881. [118] HANEEF M,EVARISTO M,MORINA A,et al. New nanoscale multilayer magnetron sputtered Ti-DLC/DLC coatings with improved mechanical properties[J]. Surface and Coatings Technology,2024,480:130595. [119] YI S,LU W,GAO C,et al. Composition,structure,and wear resistance of (TiZrNbMoTa) CxN1-x high entropy alloy carbonitride coatings prepared by reactive radio-frequency magnetron sputtering[J]. Surface and Coatings Technology,2024,477:130333. [120] WANG R,YANG C,HAO J,et al. Influence of target current on structure and performance of Cu films deposited by oscillating pulse magnetron sputtering[J]. Coatings,2022,12(3):394. [121] VELICU I L,IANOŞ G T,POROSNICU C,et al. Energy-enhanced deposition of copper thin films by bipolar high power impulse magnetron sputtering[J]. Surface and Coatings Technology,2019,359:97-107. [122] ZHANG F,ZHAO R,MA H,et al. Microstructure,mechanical properties and tribological behavior of (TiZrHfNbTa) Nx high entropy films deposited by magnetron sputtering[J]. Ceramics International,2024,50(8):13070-13081. [123] 何东青,梁瑞瑞,冯子涵,等. 中间层厚度对Cr3C2-NiCr/DLC复合涂层腐蚀磨损行为的影响[J/OL]. 中国表面工程. https://link.cnki.net/urlid/11.3905.tg. 20241217.1919.029. HE Dongqing,LIANG Ruirui,FENG Zihan,et al. The influence of interlayer thicknesses on the tribo-corrosion behaviors of Cr3C2-NiCr/DLC duplex coatings[J/OL]. China Surface Engineering. https://link.cnki.net/urlid/11.3905.tg.20241217.1919.029. [124] 杜娟,高深远,虞文军,等. DLC薄膜对A100钢的摩擦学及力学性能影响[J/OL]. 中国表面工程. https://link.cnki.net/urlid/11.3905.tg.20241202.0922.002. DU Juan,GAO Shenyuan,YU Wenjun,et al. Influence of DLC film on the tribological and mechanical properties of A100 steel[J/OL].China Surface Engineering. https://link.cnki.net/urlid/11.3905.tg.202 41202.0922.002. [125] 张绍筠,岳文,王艳艳,等. 清净剂、分散剂与ZDDP复配对a-C薄膜摩擦学性能的影响[J]. 中国表面工程,2023,36(6):90-99. ZHANG Shaojun,YUE Wen,WANG Yanyan,et al. Effect of detergent,dispersant,and zinc dialkyldithiophosphate on the tribological properties of amorphous-C films[J]. China Surface Engineering,2023,36(6):90-99. [126] FENG X,CAO S,ZHENG Y,et al. Influence of W contents on the microstructure and tribological properties of W-DLC coatings deposited by PECVD combined with magnetron sputtering[J]. Vacuum,2024,226:113293. [127] ORJUELA F A,VALLEJO F F,HAHN H,et al. Nitrogen flux effect on the mechanical properties of AlCrTiN nanostructured coatings obtained by RF magnetron sputtering[J]. Ceramics International,2023,49(11):17867-17875. [128] 周琼,岗志远,黄彪,等. 退火温度对DLC和Si-DLC涂层微观结构和摩擦学性能的影响[J]. 中国表面工程,2024,37(4):206-217. ZHOU Qiong,GANG Zhiyuan,HUANG Biao,et al. Effect of annealing temperature on microstructure and tribological properties of DLC and Si-DLC coatings[J]. China Surface Engineering,2024,37(4):206-217. [129] DANIŞMAN Ş,ODABAŞ D,TEBER M. The effect of TiN,TiAlN,TiCN thin films obtained by reactive magnetron sputtering method on the wear behavior of Ti6Al4V alloy:A comparative study[J]. Coatings,2022,12(9):1238. [130] 李晓栋,吉利,鞠鹏飞,等. 磁控溅射法制备Au薄膜及真空载流摩擦学行为研究[J]. 摩擦学学报,2022,42(2):283-293. LI Xiaodong,JI Li,JU Pengfei,et al. Study on the fabrication of Au thin films by magnetron sputtering and their tribological behavior under vacuum load[J]. Tribology Journal,2022,42(2):283-293. [131] 管筱竹,郑贺,郭鹏,等. Si/O含量对DLC涂层腐蚀性能的影响[J]. 中国表面工程,2024,37(6):283-296. GUAN Xiaozhu,ZHENG He,GUO Peng,et al. Effect of Si/O content on the long-term electrochemical corrosion performance of DLC coatings[J]. China Surface Engineering,2024,37(6):283-296. [132] YANG K,YAN J,WANG Q,et al. Revealing microstructure and the associated corrosion mechanism of Al/amorphous Al2O3/Al tri-layer coating deposited on depleted uranium by magnetron sputtering[J]. Applied Surface Science,2024,659:159911. [133] LIANG J,YANG J,ZHANG W,et al. Corrosion behavior of magnetron sputtering Fe31Cr20Al17Ti16 Nb16 high entropy coating in liquid lead-bismuth eutectic with different oxygen concentration at 500 ℃[J]. Surface and Coatings Technology,2024,480:130579. [134] HSUEH H T,SHEN W J,TSAI M H,et al. Effect of nitrogen content and substrate bias on mechanical and corrosion properties of high-entropy films (AlCrSiTiZr)100-xNx[J]. Surface and Coatings Technology,2012,206(19-20):4106-4112. [135] WU Z,ZHANG C,LIU J,et al. The investigation of microstructure,photocatalysis and corrosion resistance of C-doped Ti-O films fabricated by reactive magnetron sputtering deposition with CO2 gas[J]. Coatings,2021,11(8):881. [136] LI S,LI H,MA G,et al. Dense Cr/GLC multilayer coating by HiPIMS technique in high hydrostatic pressure:Microstructural evolution and galvanic corrosion failure[J]. Corrosion Science,2023,225:111618. [137] DUTRA P R,AMORIM C C,GASTELOIS P L,et al. Carbonaceous-TiO2 composite photocatalysts through reactive direct current magnetron sputtering on powdered graphene for environmental applications[J]. Thin Solid Films,2024,792:140248. [138] MOŚCICKI T,PSIUK R,JARZĄBEK D,et al. Effect of titanium and deposition parameters on microstructure and mechanical properties of W-Ti-B thin films deposited by high power impulse magnetron sputtering[J]. Surface and Coatings Technology,2024,485:130915. [139] SUN J,LIN Z,QIN B,et al. Effect of Si content on the microstructure and high temperature oxidation resistance of TiAlCrNiSi high-entropy alloy films synthesized by multi-target magnetron Co-sputtering[J]. Journal of Alloys and Compounds,2024,970:172674. |
[1] | 崔云先, 张博文, 丁万昱, 阎长罡, 刘义. 瞬态切削用智能测温刀具的研究[J]. 机械工程学报, 2017, 53(21): 174-180. |
[2] | 王均涛;刘平;杨丽红;李伟;刘新宽;马凤仓. TiAlN/AlON纳米多层涂层的微观结构和力学性能研究[J]. , 2012, 48(4): 72-77. |
[3] | 白力静;蒋百灵;乔亮;李艳;殷鹏. 磁控溅射微纳米梯度镀层对45钢及40Cr钢弹性变形性能的影响[J]. , 2011, 47(4): 32-36. |
[4] | 曾其勇;孙宝元;徐静;贾颖;崔云先;邓新禄;徐军. 化爆材料瞬态切削温度的NiCr/NiSi薄膜热电偶温度传感器的研制[J]. , 2006, 42(3): 206-211. |
[5] | 赵建生;许大庆;Choy Kwang-Leong. 非平衡磁控溅射类金刚石薄膜的抗刻划性能及氟对结合强度的影响[J]. , 1999, 35(5): 80-84. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||