• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (1): 360-370.doi: 10.3901/JME.2025.01.360

• 制造工艺与装备 • 上一篇    

扫码分享

电解质等离子体抛光的多物理场耦合仿真及实验研究

陈扬建1, 易军1,2, 王宗伟1, 陈冰1,2, 邓辉1,2   

  1. 1. 湖南科技大学机电工程学院 湘潭 411201;
    2. 湖南科技大学难加工材料高效精密加工湖南省重点实验室 湘潭 411201
  • 收稿日期:2024-01-07 修回日期:2024-07-05 发布日期:2025-02-26
  • 作者简介:陈扬建,男,1997年出生。主要研究方向为难加工材料精密/超精密加工。E-mail:cyj1yyds@qq.com
    易军(通信作者),男,1987年出生,博士,副教授,硕士研究生导师。主要研究方向为难加工材料精密/超精密加工。E-mail:yj_hnust@163.com
  • 基金资助:
    湖湘青年科技创新人才(2023RC3178)、湖南省研究生科研创新(CX20231039)和国家自然科学基金(51905168)资助项目。

Multi-physical Field Coupling Simulation and Experimental Research on Electrolyte Plasma Polishing

CHEN Yangjian1, YI Jun1,2, WANG Zongwei1, CHEN Bing1,2, DENG Hui1,2   

  1. 1. College of Mechanic Engineering, Hunan University of Science and Technology, Xiangtan 411201;
    2. Hunan Provincial Key Laboratory of High Efficiency and Precision Machining of Difficult-to-Cut Material, Hunan University of Science and Technology, Xiangtan 411201
  • Received:2024-01-07 Revised:2024-07-05 Published:2025-02-26

摘要: 针对电解质等离子体抛光工件轮廓成形过程难以预测的问题,开展了多物理场耦合仿真,分析了抛光过程中流场、电场分布特征,以及抛光参数对流场、电场分布的影规律;基于法拉第第一定律,建立了抛光材料去除模型。仿真结果表明抛光过程中工件周围形成了相对稳定的气层,且气层呈现下薄上厚的分布特征,气层厚度随抛光电压、工件曲率半径的增大而增加,随工件浸入深度的增加而减少;电流密度分布流线沿工件底部至顶部逐渐稀疏,电流密度随工件曲率半径及抛光电压的减小而增大;工件表面材料去除量沿工件底部至顶部逐渐降低,且电源电压越高、工件曲率半径越大,材料去除率越低,适当增加工件浸入深度,能够有效提升材料去除率。开展了316LVM不锈钢圆柱工件电解质等离子体抛光实验研究,并验证了材料去除模型的正确性。理论与实验结果将有助于更好理解电解质等离子体抛光机理,对电解质等离子体抛光过程稳定性和抛光质量一致性提升具有重要的实践价值。

关键词: 电解质等离子体抛光, 多物理场耦合, 材料去除模型, 气层分布

Abstract: In response to the difficulty in predicting the contour forming process of electrolyte plasma polishing workpieces, a multi physical field coupling simulation is conducted to analyze the characteristics of the flow field and electric field distribution during the polishing process, as well as the influence of polishing parameters on the flow field and electric field distribution. A polishing material removal model is established based on Faraday's first law. The simulation results show that a relatively stable gas layer is formed around the workpiece during the polishing process, and the gas layer exhibits a distribution feature of thin bottom and thick top. The thickness of the gas layer increases with the increase of polishing voltage and workpiece curvature radius, and decreases with the increase of workpiece immersion depth. The current density distribution streamline is gradually sparse from the bottom to the top of the workpiece, and the current density increases with the decrease of the workpiece curvature radius and polishing voltage. The amount of material removed from the surface of the workpiece gradually decreases from the bottom to the top, and the higher the power supply voltage and the larger the curvature radius of the workpiece, the lower the material removal rate. Increasing the immersion depth of the workpiece appropriately can effectively improve the material removal rate. We conducted experimental research on electrolyte plasma polishing of 316LVM stainless steel cylindrical workpieces and verified the correctness of the material removal model. The theoretical and experimental results will help to better understand the mechanism of electrolyte plasma polishing, and have important practical value for improving the stability and consistency of electrolyte plasma polishing process and polishing quality.

Key words: electrolyte plasma polishing, multi-physical field coupling, material removal model, gas layer distribution

中图分类号: