机械工程学报 ›› 2024, Vol. 60 ›› Issue (7): 134-143.doi: 10.3901/JME.2024.07.134
汪恒1, 黄薇2, 季宏丽1, 裘进浩1
收稿日期:
2023-07-03
修回日期:
2023-12-09
出版日期:
2024-04-05
发布日期:
2024-06-07
通讯作者:
季宏丽,女,1983年出生,博士研究生,教授,博士研究生导师。主要研究方向为振动噪声分析与控制、智能材料与结构、结构健康监测与无损检测。E-mail:jihongli@nuaa.edu.cn
作者简介:
汪恒,男,1993年出生,博士研究生。主要研究方向为振动控制。E-mail:hengwang@nuaa.edu.cn
基金资助:
WANG Heng1, HUANG Wei2, JI Hongli1, QIU Jinhao1
Received:
2023-07-03
Revised:
2023-12-09
Online:
2024-04-05
Published:
2024-06-07
摘要: 在工程中通常采用大面积敷设均匀阻尼材料的方式实现结构振动抑制,但是大量阻尼耗材的使用导致结构重量增加,而且振动抑制效率不高。声学黑洞(Acoustic black hole,ABH)作为一种新型轻质阻尼,通过结构厚度剪裁实现以高效波能量聚焦与耗散,近年来受到广泛关注。该研究提出“桥式”声学黑洞阻尼结构(Bridge-ABH,B-ABH)设计,将声学黑洞结构内嵌于阻尼层材料中,提升结构的振动能量耗散效率的同时减轻结构重量。通过有限元仿真建立B-ABH结构数值模型,研究了具有高损耗特征的B-ABH阻尼材料结构波能量传播特性。同时通过对B-ABH阻尼结构振动机械能流分析,探究了B-ABH结构特性对高阻尼材料中的能量耗散效率影响,揭示了B-ABH阻尼结构振动抑制机理。此外,采用附加质量进一步提升结构低频振动效果。研究结果表明,附加质量B-ABH阻尼结构相比较均匀阻尼层质量减少30%的同时,结构振动抑制在10~1 000 Hz频率范围内平均降低了4.6 dB。
中图分类号:
汪恒, 黄薇, 季宏丽, 裘进浩. 基于“桥式”阻尼声学黑洞结构的振动抑制机理分析[J]. 机械工程学报, 2024, 60(7): 134-143.
WANG Heng, HUANG Wei, JI Hongli, QIU Jinhao. Vibration Suppression Analysis Based on “Bridge” Damping Acoustic Black Hole Structure[J]. Journal of Mechanical Engineering, 2024, 60(7): 134-143.
[1] 吕平,盖盼盼,伯仲维,等. 阻尼层厚度对结构阻尼性能的影响[J]. 噪声与振动控制,2013,33(2):101-104. LÜ Ping,GAI Panpan,BO Zhongwei,et al.Influence of damping layer thickness on structural damping performance[J]. Noise and Vibration Control,2013,33(2):101-104. [2] 张燕妮,陈克安,郝夏影,等. 水超声材料研究进展[J]. 科学通报,2020,65(15):1396-1410. ZHANG Yanni,CHEN Kean,HAO Xiaying,et al. Progress in research on underwater ultrasonic materials[J]. Science Bulletin,2020,65(15):1396-1410. [3] BERTHELOT J,SEFRANI Y. Damping analysis of unidirectional glass and kevlar fibre composites[J]. Composites Science and Technology,2004,64(9):1261-1278. [4] BOUCHER M,SMITH C,SCARPA F,et al. Effective topoiogies for vibration damping inserts in honeycomb structures[J]. Composite Structures,2013,106:1-14. [5] 刘悬竹. 微穿孔阻尼周期结构动态特性分析[D]. 大连:大连理工大学,2012. LIU Xuanzhu. Dynamic characteristics analysis of micro-perforation damping cycle structure[D]. Dalian:Dalian University of Technology,2012. [6] 王东涛,朱大巍,黄修长. 局域共振子对手性覆盖层振动和声辐射抑制的影响[J]. 噪声与振动制,2015,35(6):22-25. WANG Dongtao,ZHU Dawei,HUANG Xiuchang. The influence of local resonance on the vibration and acoustic radiation suppression of chiral overburden[J]. Noise and Vibration Control,2015,35(6):22-25. [7] HUANG LingZhi,XIAO Yong,WEN Jihong. Analysis of underwater decoupling properties of a locally resonant acoustic metamaterial coating[J]. Chinese Physics B,2016,25(2):225-232. [8] 黄凌志,肖勇,温激鸿,等. 一种含横向圆柱形空腔的声学覆盖层的去耦机理分析[J]. 物理学报,2015,64(15):259-268. HUANG Lingzhi,XIAO Yong,WEN Jihong,et al.Decoupling mechanism analysis of an acoustic coating with a transverse cylindrical cavity[J]. Journal of Physics,2015,64(15):259-268. [9] 赵贺桃. 基于能量流分析的约束阻尼层合板拓扑优化方法[D]. 哈尔滨:哈尔滨工程大学,2019. ZHAO Hetao. Topology optimization method of constrained damping laminate based on energy flow analysis[D]. Harbin:Harbin Engineering University,2019. [10] ZHANG Yanni,Huang Hai,PAN Jie. Sound radiation from a fluid-loaded plate with periodic inhomogeneities of finite width[J]. The Journal of the Acoustical Society of America,2016,140(4):2437-2444. [11] ZHANG Yanni,HUANG Hai,PAN Jie. Underwater sound radiation from an elastically coated infinite plate with periodic inhomogeneities of finite width[J]. The Journal of the Acoustical Society of America,2017,142(1):91-102. [12] 文屹,陈易飞,毛先胤,等. 500 kV输电铁塔覆冰风险评估与加固措施[J]. 电力工程技术,2023,42(2):250-257. WEN Yi,CHEN Yifei,MAO Xianyin,et al. Icing risk assessment and reinforcement measures of 500 kV transmission tower[J]. Electric Power Engineering Technology,2023,42(2):250-257. [13] KRYLOV V,WINWARD R. Experimental investigation of the acoustic black hole effect for flexural waves in tapered plates[J]. Journal of Sound and Vibration,2007,300(1-2):43-49. [14] MA Li,DONG Haowen,CHENG Li. An alternative and optimized thickness profile of an acoustic black hole plate[J]. Journal of Sound and Vibration,2020,486. [15] JI Hongli,WANG Ning,ZHANG Chao,et al. A vibration absorber based on two-dimensional acoustic black holes[J]. Journal of Sound and Vibration,2021,500. [16] WAN Zhiwei,ZHU Xiang,LI Tianyun,et al.Low-Frequency multimode vibration suppression of an acoustic black hole beam by shunt damping[J]. Journal of Vibration and Acoustic,2022,144. [17] JI Hongli,HAN Bing,CHENG Li,et al. Frequency attenuation band with low vibration transmission in a finite-size plate strip embedded with 2D acoustic black holes[J]. Mechanical Systems and Signal Processing,2022,163. [18] 郑锋,黄薇,季宏丽,等. 复合材料薄板结构中的声学黑洞效应探究[J]. 航空学报,2023,44(1):292-301. ZHENG Feng,HUANG Wei,JI Hongli,et al. Exploration of acoustic black hole effect in composite sheet structure[J]. Acta aeronautica et astronautica sinica,2023,44(1):292-301. [19] ZHAO Liuxian. Low-frequency vibration reduction using a sandwich plate with periodically embedded acoustic black holes[J]. Journal of Sound and Vibration,2019,441. [20] 黄薇. 薄壁结构中声学黑洞的弯曲波操控与能量耗散特性研究[D]. 南京:南京航空航天大学,2020. HUANG Wei. A study on flexural wave manipulation and energy dissipation of acoustic black hole in thin-walled structures[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2020. [21] 胡海岩. 机械振动基础[M]. 北京:北京航空航天大学出版社,2005. HU Haiyan. Fundamentals of mechanical vibration[M]. Beijing:Beihang University Press,2005. [22] HUANG Wei,JI Hongli,QIU Jinhao,et al. Wave energy focalization in a plate with imperfect two-dimensional acoustic black hole indentation[J]. Journal of Vibration and Acoustics,2016,138. [23] 仪垂杰,陈天宁,李伟,等. 板结构功率流的参数研究[J]. 应用力学学报,1995,145(4):21-27. YI Chuijie,CHEN Tianning,LI Wei,et al. Study on parameters of power flow in plate structure[J]. Chinese Journal of Applied Mechanics,1995,145(4):21-27. |
[1] | 雷震, 姜宏, 章翔峰, 李军, 孔艺一, 白宇. 行星齿轮系统齿裂纹演化分析[J]. 机械工程学报, 2024, 60(19): 101-115. |
[2] | 陈耿彪, 刘志文, 尹来容, 易继军, 张拓. 半主动三附气室空气弹簧吸振器特性分析[J]. 机械工程学报, 2024, 60(17): 194-207. |
[3] | 侯旭朝, 马越, 项昌乐. 电驱动履带车辆转向稳定性控制研究[J]. 机械工程学报, 2024, 60(8): 233-244. |
[4] | 高楠, 王世宇, 夏春花, 魏振航. 变截面单元环状周期结构固有频率分裂规律研究[J]. 机械工程学报, 2024, 60(7): 114-123. |
[5] | 商德勇, 黄欣怡, 黄云山, 张天佑. 基于Kane方程的Delta并联机器人刚柔耦合动力学研究[J]. 机械工程学报, 2024, 60(7): 124-133. |
[6] | 马召召, 周瑞平, 杨庆超, LEE Heow Pueh, 柴凯. 含电磁分流阻尼双层准零刚度隔振系统的动力学特性分析[J]. 机械工程学报, 2024, 60(5): 157-168. |
[7] | 邓聪颖, 邓子豪, 林丽君, 陈翔, 马莹, 禄盛. 基于迁移学习的变刀具-刀柄夹持状态下数控铣削稳定性预测研究[J]. 机械工程学报, 2024, 60(3): 296-304. |
[8] | 杨亮亮, 来孝楠, 何西旺, 李鹏, 郭正刚, 宋学官. 面向飞机机翼数字孪生的在线加速度积分方法[J]. 机械工程学报, 2024, 60(2): 342-355. |
[9] | 李月昊, 胡茑庆, 程哲, 尹正阳, 黄良远. 基于惯容的浮筏隔振系统人工自愈技术研究[J]. 机械工程学报, 2023, 59(18): 13-21. |
[10] | 宾光富, 钟新利, 张阳演, 杨峰, 陈安华. 基于压电驱动浮环轴承间隙可调的涡轮增压器转子瞬变振动主动控制[J]. 机械工程学报, 2023, 59(18): 31-41. |
[11] | 暴一帆, 姚剑飞, 高金吉. 基于自适应浸入和不变理论的转子多频振动靶向抑制[J]. 机械工程学报, 2023, 59(18): 111-120. |
[12] | 左彦飞, 李宁, 马波, 史守州, 冯坤. 基于多体接触瞬态动力学不对中故障模拟及试验验证[J]. 机械工程学报, 2023, 59(13): 133-147. |
[13] | 李春明, 鲍珂. 基于载荷传递路径的履带车辆多层级耦合动力学建模与分析[J]. 机械工程学报, 2023, 59(13): 157-174. |
[14] | 王汝贵, 陈辉庆, 董奕辰. 可控变胞式码垛机器人非线性动态可靠性分析[J]. 机械工程学报, 2023, 59(11): 189-200. |
[15] | 郑良焱, 朱汉华, 范世东, 熊庭, 马晶宁, 吴洁, 江攀. 计入应力偶效应的滑动轴承热流体混合润滑研究[J]. 机械工程学报, 2023, 59(10): 290-300. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||