[1] BONIKOWSKI M, HAJDUK M, KOUKOLOVA L, et al. New trends in the use of robotic devices in motor rehabilitation of upper limbs[C]//International Conference on Automation. Springer, Cham, 2016:729-739. [2] PERRY J C, ROSEN J, BURNS S. Upper-limb powered exoskeleton design[J]. IEEE/ASME Trans Mechatronics, 2007, 12(4):408-417. [3] HOGAN N. Impedance control:An approach to manipulation[C]//American Control Conference, 1984, San Diego, CA, USA:IEEE, 1984:304-313. [4] TSAGARAKIS N G, LAFFRANCHI M, VANDERBORGHT B, et al. A compact soft actuator unit for small scale human friendly robots[C]//IEEE International Conference on Robotics and Automation. Kobe, Japan:IEEE, 2009:4356-4362. [5] TSAGARAKIS N G, METTA G, SANDINI G et al. iCub:The design and realization of an open humanoid platform for cognitive and neuroscience research[J]. Advanced Robotics, 2007, 21(10):1151-1175. [6] 陆盛,胡冰山,程科,等.康复机器人柔顺变刚度驱动机构研究进展[J].中国康复理论与实践, 2021, 27(6):627-636. LU Sheng, HU Bingshan, CHENG Ke, et al. Advance in flexible variable stiffness actuator of rehabilitation robot (review)[J]. Chinese Journal of Rehabilitation Theory and Practice, 2021, 27(6):627-636. [7] TONIETTI G, SCHIAVI R, BICCHI A. Design and control of a variable stiffness actuator for safe and fast physical human/robot interaction[C]//Proceedings of the 2005IEEE International Conference on Robotics and Automation. Barcelona, Spain:IEEE, 2005:526-531. [8] SCHIAVI R, GRIOLI G, SEN S, et al. VSA-II:A novel prototype of variable stiffness actuator for safe and performing robots interacting with humans[C]//IEEE International Conference on Robotics and Automation. Pasadena, CA, USA:IEEE, 2008:2171-2176. [9] WOLF S, HIRZINGER G. A new variable stiffness design:Matching requirements of the next robot generation[C]//2008 IEEE International Conference on Robotics and Automation. Pasadena, CA, USA:IEEE, 2008:1741-1746. [10] WOLF S, EIBERGER O, HIRZINGER G. The DLR FSJ:Energy based design of a variable stiffness joint[C]//2011 IEEE International Conference on Robotics and Automation. Shanghai, China:IEEE, 2011:5082-5089. [11] JAFARI A, TSAGARAKIS N G, CALDWELL D G. A novel intrinsically energy efficient actuator with adjustable stiffness (AwAS)[J]. IEEE/ASME Transactions on Mecha-tronics, 2013, 18(1):355-365. [12] JAFARI A, TSAGARAKIS N G, CALDWELL D G. AwAS-II:A new actuator with adjustable stiffness based on the novel principle of adaptable pivot point and variable lever ratio[C]//2011 IEEE International Conference on Robotics and Automation. Shanghai, China:IEEE, 2011:4638-4643. [13] TAO Y, WANG T, WANG Y, et al. Design and modeling of a new variable stiffness robot joint[C]//Multisensor Fusion and Information Integration for Intelligent Systems (MFI), 2014 International Conference on, Beijing:IEEE, 2014:1-5. [14] SCHIMMELS J M, GARCES D R. The arched flexure VSA:A compact variable stiffness actuator with large stiffness range[C]//Robotics and Automation (ICRA), 2015 IEEE International Conference on, Seattle, WA:IEEE, 2015:220-225. [15] VAN HAM R, VANDERBORGHT B, VAN DAMME M, et al. MACCEPA, the mechanically adjustable compliance and controllable equilibrium position actuator:Design and implementation in a biped robot[J]. Robotics and Autonomous Systems, 2007, 55(10):761-768. [16] AU SK, HERR H, WEBER J, et al. Powered ankle-foot prosthesis for the improvement of amputee ambulation[C]//2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France:IEEE, 2015:220-225. [17] TSAGARAKIS N G, SARDELLITTI I, CALDWELL D G. A new variable stiffness actuator (CompAct-VSA):Design and modelling[C]//2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco, CA, USA:IEEE, 2011:378-383. [18] 刘畅,毕树生,赵宏哲,等.基于折叠式串联簧片的可调刚度致动器设计[J].机械工程学报, 2017, 53(17):70-77. LIU Chang, BI Shusheng, ZHAO Hongzhe, et al. Novel variable stiffness actuator based on folded serial leaf springs[J]. Journal of Mechanical Engineering, 2017, 53(17):70-77. [19] CHOI J, PARK S, LEE W, et al. Design of a robot joint with variable stiffness[C]//2008 IEEE International Conference on Robotics and Automation (ICRA). Pasadena, CA, USA:IEEE, 2008:760-1765. [20] 董燕,王彤,孟殿怀,等.上肢抗阻圆周运动中相关肌群活动的肌电分析[J].中国康复医学杂志, 2007, 22(8):706-709. DONG Yan, WANG Tong, MENG Dianhua, et al. The effect of the upper limbs'encircling motion and feedback apparatus on the muscles of trunk and limbs during resistance exercise with surface elecromyogram[J]. Chinese Journal of Rehabilitation Medicine, 2007, 22(8):706-709. [21] HOLLANDER K W, SUGAR T G, HERRING D E. Adjustable robotic tendon using a ‘Jack Spring' TM[C]//Rehabilitation Robotics, 2005. ICORR 2005. 9th International Conference on, IEEE, 2005:113-118. [22] MORITA T, SUGANO S. Design and development of a new robot joint using a mechanical impedance adjuster[C]//Robotics and Automation, 1995 IEEE International Conference on, Nagoya:IEEE, 1995:2469-2475. [23] AWTAR S,SLOCUM A H,SEVINCER E. Characteristics of beam-based flexure modules[J]. ASME Journal of Mechanical Design, 2007, 129(6):625-639. |