[1] 张磊,祝毅,杨华勇. 基于增材制造的液压复杂流道轻量化设计与成形[J]. 液压与气动,2018,327(11):1-7. ZHANG Lei,ZHU Yi,YANG Huayong. Lightweight design and manufacturing of complex hydraulic passageway based on additive manufacturing[J]. Chinese Hydraulics & Pneumatics,2018,327(11):1-7. [2] ALSHARE A A,CALZONE F,MUZZUPAPPA M. Hydraulic manifold design via additive manufacturing optimized with CFD and fluid-structure interaction simulations[J]. Rapid Prototyping Journal,2019, 25(9):1516. [3] SEMINI C,GOLDSMITH J,MANFREDI D,et al. Additive manufacturing for agile legged robots with hydraulic actuation[C]//International Conference on Advanced Robotics. IEEE. 2015:123-129. [4] Renishaw. Hydraulic block manifold redesign for additive manufacturing[EB/OL].[2020-12-26]. https://www.renishaw.com/en/hydraulic-block-manifold-redesign-for-additive-manufacturing--38949. [5] 李莹,张玉莹,柳宝磊,等. 基于增材制造的液压阀块流道过渡区优化研究[J]. 液压与气动,2021,(01):56-66. LI Ying,ZHANG Yuying,LIU Baolei,et al. Optimization of flow channel transition area in hydraulic valve block based on additive manufacturing[J]. Chinese Hydraulics & Pneumatics,2021(1):56-66. [6] 苏猛猛. 基于增材制造的液压阀块优化设计与工艺研究[D]. 大连:大连理工大学,2018. SU Mengmeng. Optimization design and process research of hydraulic valve block based on additive manufacturing[D]. Dalian:Dalian University of Technology,2018. [7] SHER D. First 3D printed hydraulic manifold successfully flies on airbus A380 aircraft[EB/OL].[2021-01-25]. http://www.3ders.org/. [8] SCHMELZLE J,KLINE E V,DICKMAN C J,et al. (Re) Designing for part consolidation:understanding the challenges of metal additive manufacturing[J]. Journal of Mechanical Design,2015,137(11):111404. [9] ZHU Y,YANG Y,WANG Y N,et al. Localized property design and gradient processing of a hydraulic valve body using selective laser melting[J]. IEEE/ASME Transactions on Mechatronics,2020,26(2):1151-1160. [10] MALMSTROM T G. Pressure drops in T-junctions——a comparison[J]. Ashrae Transactions,2000,106(1):359-364. [11] COSTA N P,MAIA R,PROENC A,et al. Edge effects on the flow characteristics in a 90 deg tee junction[J]. Journal of Fluids Engineering,2006,128(6):1204-1217. [12] 石喜,陶虎,柴媛媛,等. UPVC斜三通阻力损失及流动特征数值模拟[J]. 中国农村水利水电,2018(11):170-174. SHI Xi,TAO Hu,CAI Yuanyuan,et al. Numerical simulation of resistance loss and flow characteristics on UPVC slope tee pipes[J]. China Rural Water and Hydropower,2018(11):170-174. [13] 茅泽育,罗昇,赵璇,等. 矩形断面压力管道汇流口局部能量损失[J]. 水利水电科技进展,2006,26(3):62-66. MAO Zeyu,LUO Sheng,ZHAO Xuan,et al. Local energy loss at junction of pressurized pipes with rectangular cross section[J]. Advances in Science and Technology of Water Resources,2006,26(3):62-66 [14] 茅泽育,赵凯,赵璇,等. 管道汇流口局部阻力试验研究[J]. 水利学报,2007,38(7):812-818. MAO Zeyu,ZHAO Ka,ZHAO Xuan,et al. Experimental study on local flow resistance at junctions of circular pipes[J]. Journal of Hydraulic Engineering,2007,38(7):812-818. [15] 秦慧敏. 关于通风管三通的局部阻力系数问题[J]. 建筑技术通讯(暖通空调),1980(3):10-13. QIN Huimin. The problem of local resistance coefficient of three-way ventilation pipe[J]. Construction technology of communication(Heating Ventilation Air Conditioning),1980(3):10-13. [16] 陈文创,张蕊,张文远,等. 复杂非对称岔管数值模拟中湍流模型的影响[J]. 清华大学学报,2018,58(8):752-760. CHEN Wenchuang,ZHANG Rui,ZHANG Wenyuan,et al. Effect of turbulence models on the simulation of the flow in a complex asymmetric penstock[J]. Journal of Tsinghua University,2018,58(8):752-760. [17] 魏善思,吴仁智,米智楠. 弯管流动阻力数值仿真分析[J]. 流体传动与控制,2016(3):5-8. WEI Shansi,WU Renzhi,MI Zhinan. Flow resistance characteristic research on bending pipe[J]. Fluid Power Transmission and Control,2016(3):5-8. [18] 周传辉,翁维安. 流体阻力系数的计算方法[J]. 制冷与空调,2004,18(3):35-36. ZHOU Chuanhui,WEN Weian. Calculational methods about the friction factor of fluid[J]. Refrigeration & Air Conditioning,2004,18(3):35-36. [19] ZHU Y,ZHOU L,WANG S,et al. On friction factor of fluid channels fabricated using selective laser melting[J]. Virtual and Physical Prototyping,2020,15(4):496-509. |