机械工程学报 ›› 2024, Vol. 60 ›› Issue (3): 354-372.doi: 10.3901/JME.2024.03.354
马传震1,2, 刘赫男1,2, 陈明君2, 田金川2, 周子涵2, 孙建刚2, 秦彪2
收稿日期:
2023-03-01
修回日期:
2023-08-11
出版日期:
2024-02-05
发布日期:
2024-04-28
通讯作者:
陈明君,男,1971年出生,博士,教授,博士研究生导师。主要研究方向为超精密加工、先进制造技术及微纳米制造技术。E-mail:chenmj@hit.edu.cn
作者简介:
马传震,男, 1996 年出生,博士研究生。主要研究方向为超精密加工及先进制造技术。E-mail:machuanzhen@126.com;刘赫男,男, 1989 年出生,博士,副研究员,硕士研究生导师。主要研究方向为超精密加工及先进制造技术。E-mail:liuhn@hit.edu.cn
基金资助:
MA Chuanzhen1,2, LIU Henan1,2, CHEN Mingjun2, TIAN Jinchuan2, ZHOU Zihan2, SUN Jiangang2, QIN Biao2
Received:
2023-03-01
Revised:
2023-08-11
Online:
2024-02-05
Published:
2024-04-28
摘要: 半球谐振陀螺具有结构简单、精度高、可靠性高、工作寿命长等特性,在国防军事、通信卫星、载人航天、天文观测、海洋工程等领域具有重大应用场景。半球谐振子作为半球谐振陀螺仪的核心器件,其加工质量直接影响半球谐振子的频率裂解和品质因数, 进而影响半球谐振陀螺仪的工作精度和使用寿命, 因此非常有必要对半球谐振子的性能及制造工艺进行研究。主要从半球谐振陀螺仪工作原理和研究历程、半球谐振子的频率裂解和品质因数、半球谐振子的制造工艺三个方面进行综述,重点分析了半球谐振子的频率裂解与品质因数的研究方法和最新进展以及半球谐振子的超精密磨削工艺和抛光工艺,并探讨分析了其在发展过程中面临的挑战和仍需要解决的问题,希望为后续精确计算、测量半球谐振子的频率裂解和品质因数,改进半球谐振子的制造工艺,提高半球谐振陀螺仪的导航精度提供参考。
中图分类号:
马传震, 刘赫男, 陈明君, 田金川, 周子涵, 孙建刚, 秦彪. 半球谐振子关键性能及制造工艺研究新进展[J]. 机械工程学报, 2024, 60(3): 354-372.
MA Chuanzhen, LIU Henan, CHEN Mingjun, TIAN Jinchuan, ZHOU Zihan, SUN Jiangang, QIN Biao. Research Progress on Key Property and Manufacturing Technology of Hemispherical Resonator[J]. Journal of Mechanical Engineering, 2024, 60(3): 354-372.
[1] 苏中,李擎,李旷振,等.惯性技术[M].北京:国防工业出版社, 2010. SU Zhong, LI Qing, LI Kuangzhen, et al. Inertial technology[M]. Beijing:National Defense Industry Press, 2010. [2] 吕志清.半球谐振陀螺在宇宙飞船上的应用[J].压电与声光, 1999, 21(5):349-353. LÜ Zhiqing. The application of HRG in the spacecraft[J]. Piezoelectrics and Acoustooptics, 1999, 21(5):349-353. [3] 周徐昌,沈建森.惯性导航技术的发展及其应用[J].兵工自动化, 2006, 25(9):55-56. ZHOU Xuchang, SHEN Jiansen. Development of inertial navigation technology and its applications[J]. Ordnance Industry Automation, 2006, 25(9):55-56. [4] AYAZI F. A high aspect-ratio high-performance polysilicon vibrating ring gyroscope[D]. Michigan:University of Michigan, 2000. [5] 高海钰.微半球谐振陀螺的结构设计与工艺研究[D].南京:东南大学, 2017. GAO Haiyu. Structural design and process study of micro hemispherical resonator gyroscope[D]. Nanjing:Southeast University, 2017. [6] MEYER A D, ROZELLE D M, TRUSOV A A, et al. Milli-HRG inertial sensor assembly-a reality[C]//IEEE International Symposium on Inertial Sensors and Systems (ISISS). New York:IEEE, 2015:20-23. [7] 贾智学,付丽萍,任佳婧.半球谐振陀螺技术发展趋势[J].导航与控制, 2018, 17(3):83-87. JIA Zhixue, FU Liping, REN Jiajing. Development trend of hemispheric resonator gyroscope[J]. Navigation and Control, 2018, 17(3):83-87. [8] ROZELLE D M. The hemispherical resonator gyro:From wineglass to the planets[J]. Advances in the Astronautical Sciences, 2009, 134:1157-1178. [9] DELHAYE F. HRG by SAFRAN:The game-changing technology[C]//IEEE International Symposium on Inertial Sensors and Systems (INERTIAL). New York:IEEE, 2018:173-176. [10] CHO J Y, NAJAFI K. A high Q all-fused silica solid-stem wineglass hemispherical resonator formed using micro blow torching and welding[C]//IEEE International Conference on Micro Electro Mechanical Systems (MEMS). New York:IEEE, 2015:821-824. [11] XU Z, YI G, ER M J, et al. Effect of uneven electrostatic forces on the dynamic characteristics of capacitive hemispherical resonator gyroscopes[J]. Sensors, 2019, 19(6):1291-1306. [12] B A马特维耶夫, B N利帕特尼科夫, A B阿廖欣,等.固体波动陀螺[M].北京:国防工业出版社, 2009. MATVEEV V A, LIPATNIKOV V I, ALEKIN A V, et al. Solid state wave gyro[M]. Beijing:National Defence Industry Press, 2009. [13] LEE H W, KWAK M K. Free vibration analysis of a circular cylindrical shell using the Rayleigh-Ritz method and comparison of different shell theories[J]. Journal of Sound and Vibration, 2015, 353:344-377. [14] CHANG C O, HWANG J J, CHOU C S. Modal precession of a rotating hemispherical shell[J]. International Journal of Solids and Structures, 1996, 33(19):2739-2757. [15] LOVEDAY P W, ROGERS C A. The influence of control system design on the performance of vibratory gyroscopes[J]. Journal of Sound and Vibration, 2002, 255(3):417-432. [16] BRYAN G H. On the beats in the vibrations of a revolving cylinder or bell[J]. Proceedings of the Cambridge Philosophical Society, 1980, 7:101-111. [17] REMILLIEUX G, GOUDON J C, ROBERFROID D. Coriolis vibrating gyros for aeronautical applications[C]//SAE International Aerospace Technology Conference and Exposition. Texas:SAE, 2011:1-14. [18] JEANROY A, BOUVET A, REMILLIEUX G. HRG and marine applications[J]. Gyroscopy and Navigation, 2014, 5(2):67-74. [19] REMILLIEUX G, DELHAYE F. Sagem coriolis vibrating gyros:a vision realized[C]//DGON Inertial Sensors and Systems. New York:IEEE, 2014:1-13. [20] JEANROY A, GROSSET G, GOUDON J C, et al. HRG by Sagem from laboratory to mass production[C]//IEEE International Symposium on Inertial Sensors and Systems. New York:IEEE, 2016:1-4. [21] LENOBLE A, ROUILLEAULT T. PRIMUS:SWAP-oriented IMUs for multiple applications[C]//DGON Inertial Sensors and Systems. New York:IEEE, 2016:1-16. [22] FRIEDLAND B, HUTTON M F. Theory and error analysis of vibrating-member gyroscope[J]. IEEE Transactions on Automatic Control, 1978, 23(4):545-556. [23] SHATALOV M Y, JOUBERT S V, COETZEE C E. The influence of mass imperfections on the evolution of standing waves in slowly rotating spherical bodies[J]. Journal of Sound and Vibration, 2011, 330(1):127-135. [24] FOX C H J. A simple theory for the analysis and correction of frequency splitting in slightly imperfect rings[J]. Journal of Sound and Vibration, 1990, 142(2):227-243. [25] ACHONG A. Vibrational analysis of mass loaded plates and shallow shells by the receptance method with application to the steelpan[J]. Journal of Sound and Vibration, 1996, 191(2):207-217. [26] SCHWARTZ D, KIM D J, M'CLOSKEY R T. Frequency tuning of a disk resonator gyro via mass matrix perturbation[J]. Journal of Dynamic Systems Measurement and Control, 2009, 131(6):061004. [27] YAMADA G, IRIE T, NOTOYA S. Natural frequencies of elliptical cylindrical shells[J]. Journal of Sound and Vibration, 1985, 101(1):133-139. [28] KIREENKOV A A. An algorithm for calculating natural frequencies of a hemispherical resonator gyro[J]. Mechanics of Solids, 1997, 32(3):1-6. [29] ROURKE A K, MCWILLIAM S, FOX C H J. Multi-mode trimming of imperfect rings[J]. Journal of Sound and Vibration, 2001, 248(4):695-724. [30] MCWILLIAM S, ONG J, FOX C H J. On the statistics of natural frequency splitting for rings with random mass imperfections[J]. Journal of Sound and Vibration, 2005, 279(1-2):453-470. [31] BISEGNA P, CARUSO G. Frequency split and vibration localization in imperfect rings[J]. Journal of Sound and Vibration, 2007, 306(3-5):691-711. [32] CHOI S, KIM J. Natural frequency split estimation for inextensional vibration of imperfect hemispherical shell[J]. Journal of Sound and Vibration, 2011, 330(9):2094-2106. [33] JOUBERT S V, SHATALOV M Y, COETZEE C E. Analyzing manufacturing imperfections in a spherical vibratory gyroscope[C]//IEEE International Workshop on Advances in Sensors and Interfaces (IWASI). New York:IEEE, 2011:165-170. [34] SHATALOV M, COETZEE C. Dynamics of rotating and vibrating thin hemispherical shell with mass and damping imperfections and parametrically driven by discrete electrodes[J]. Gyroscopy and Navigation, 2011, 2(1):27-33. [35] WANG X, WU W, FANG Z, et al. Temperature drift compensation for hemispherical resonator gyro based on natural frequency[J]. Sensors, 2012, 12(5):6434-6446. [36] 任顺清,赵洪波.谐振子密度偏差引起的频率裂解的分析[J].哈尔滨工业大学学报, 2012, 44(3):13-16. REN Shunqing, ZHAO Hongbo. Analysis of frequency cracking of resonator under the density error[J]. Journal of Harbin Institute of Technology, 2012, 44(3):13-16. [37] SORENSON L, AYAZI F. Effect of structural anisotropy on anchor loss mismatch and predicted case drift in future micro-hemispherical resonator gyros[C]//IEEE/ION Position, Location and Navigation Symposium (PLANS). New York:IEEE, 2014:493-498. [38] 徐泽远,伊国兴,魏振楠,等.一种半球谐振陀螺谐振子动力学建模方法[J].航空学报, 2018, 39(3):221624. XU Zeyuan, YI Guoxing, WEI Zhennan, et al. A dynamic modeling method for resonator of hemispherical resonator gyro[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(3):221624. [39] BERNSTEIN J J, BANCU M G, BAUER J M, et al. High Q diamond hemispherical resonators:Fabrication and energy loss mechanisms[J]. Journal of Micromechanics and Microengineering, 2015, 25(8):085006. [40] BASARAB M A, LUNIN B S, MATVEEV V A, et al. Balancing of hemispherical resonator gyros by chemical etching[J]. Gyroscopy and Navigation, 2015, 6(3):218-223. [41] WANG Y, PAN Y, QU T, et al. Decreasing frequency splits of hemispherical resonators by chemical etching[J]. Sensors, 2018, 18(11):3772. [42] LI S, RONG Y, ZHAO W, et al. Measurement method of frequency splitting for high-Q hemispherical resonator based on standing wave swing effect[C]//IEEE International Symposium on Inertial Sensors and Systems (INERTIAL). New York:IEEE, 2020:1-4. [43] XU Z,ZHU W,YI G,et al. Dynamic modeling and output error analysis of an imperfect hemispherical shell resonator[J]. Journal of Sound and Vibration, 2021, 498:115964. [44] XU Z, YI G, ZHU W. An accurate thermoelastic model and thermal output error analysis of a hemispherical resonator gyroscope under varying temperatures[J]. Mechanical Systems and Signal Processing, 2022, 170:108760. [45] 宁友欢,伊国兴,奚伯齐,等.半球谐振子装配倾角误差对频率裂解的影响分析[J].中国惯性技术学报, 2021, 29(4):510-515. NING Youhuan, YI Guoxing, XI Boqi, et al. The influence of assembly inclination error in hemispherical resonator on frequency splitting[J]. Journal of Chinese Inertial Technology, 2021, 29(4):510-515. [46] RUAN Z, DING X, QIN Z, et al. Modeling and compensation of assembly inclination error of micro hemispherical resonator gyroscope under force-to-rebalance mode[J]. IEEE Sensors Journal, 2021, 21(13):14726-14738. [47] DARVISHIAN A, NAGOURNEY T, CHO J Y, et al. Thermoelastic dissipation in micromachined birdbath shell resonators[J]. Journal of Microelectromechanical Systems, 2017, 26(4):758-772. [48] DUWEL A, CANDLER R N, KENNY T W, et al. Engineering MEMS resonators with low thermoelastic damping[J]. Journal of Microelectromechanical Systems, 2006, 15(6):1437-1445. [49] DZHASHITOV V E, PANKRATOV V M. Mathematical models of the thermoelastic stress-strain state, temperature, and technological errors of a wave solid-state sensor of inertial informations[J]. Journal of Machinery Manufacture and Reliability, 2010, 39(3):248-255. [50] SHIARI B, NAJAFI K. Surface effect influence on the quality factor of microresonators[C]//International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers and Eurosensors XXVII). New York:IEEE, 2013:1715-1718. [51] DARVISHIAN A, SHIARI B, CHO J Y, et al. Investigation of thermoelastic loss mechanism in shell resonators[C]//Proceedings of ASME 2014 International Mechanical Engineering Congress and Exposition. New York:American Society of Mechanical Engineers, 2014:39331. [52] AHAMED M J, SENKAL D, SHKEL A M. Effect of annealing on mechanical quality factor of fused quartz hemispherical resonator[C]//IEEE International Symposium on Inertial Sensors and Systems (ISISS). New York:IEEE, 2014:59-62. [53] SORENSON L, SHAO P, AYAZI F. Bulk and surface thermoelastic dissipation in micro-hemispherical shell resonators[J]. Journal of Microelectromechanical Systems, 2015, 24(2):486-502. [54] XI X, WU X, WU Y, et al. Modeling and analysis of mechanical quality factor of the resonator for cylinder vibratory gyroscope[J]. Chinese Journal of Mechanical Engineering, 2017, 30(1):180-189. [55] DARVISHIAN A, SHIARI B, CHO J Y, et al. Anchor loss in hemispherical shell resonators[J]. Journal of Microelectromechanical Systems, 2017, 26(1):51-66. [56] 杨浩,李绍良,段杰,等.半球谐振子质量不平衡对Q值的影响分析[C]//中国惯性技术学会2020年科技工作者研讨会-惯性传感器技术与应用.北京:中国惯性技术学会, 2020:86-91. YANG Hao, LI Shaoliang, DUAN Jie, et al. Influence of mass unbalance of hemispherical resonator on the quality factor[C]//2020 Symposium of Scientific and Technological Workers of China Society of Inertial Technology-Inertial Sensor Technology and Application. Beijing:Chinese Society of Inertial Technology, 2020:86-91. [57] WEI Z, YI G, YAN H, et al. High-precision synchronous test method of vibration performance parameters for fused quartz hemispherical resonator[J]. Measurement, 2021, 185(11):109924. [58] 郭东明,孙玉文,贾振元.高性能精密制造方法及其研究进展[J].机械工程学报, 2014, 50(11):119-134. GUO Dongming, SUN Yuwen, JIA Zhenyuan. Method and research progress of high performance manufacturing[J]. Journal of Mechanical Engineering. 2014, 50(11):119-134. [59] 郭东明.高性能精密制造[J].中国机械工程, 2018, 29(7):757-765. GUO Dongming. High-performance precision manufacturing[J]. China Mechanical Engineering, 2018, 29(7):757-765. [60] XI J, ZHAO H, LI B, et al. Profile error compensation in cross-grinding mode for large-diameter aspheric mirrors[J]. International Journal of Advanced Manufacturing Technology, 2016, 83(9-12):1515-1523. [61] CHEN F, YIN S, OHMORI H, et al. Form error compensation in single-point inclined axis nanogrinding for small aspheric insert[J]. International Journal of Advanced Manufacturing Technology, 2013, 65(1-4):433-441. [62] CHEN W K, KURIYAGAWA T, HUANG H, et al. Machining of micro aspherical mould inserts[J]. Precision Engineering, 2005, 29(3):315-323. [63] ZHANG Q, ZHAO Q, TO S, et al. A further study of wheel normal grinding of hemisphere couples on TiC-based cermet[J]. International Journal of Advanced Manufacturing Technology, 2016, 87(9-12):2593-2602. [64] SUZUKI H, KURIYAGAWA T, SYOJI K, et al. Micronizing of aspherical surface in inclined rotational grinding[J]. Journal of the Japan Society for Precision Engineering, 1998, 64(9):1350-1354. [65] CHEN F, YIN S, HUANG H, et al. Fabrication of small aspheric moulds using single point inclined axis grinding[J]. Precision Engineering, 2015, 39:107-115. [66] GAO C, CHENG J, WU J. Experimental study of metal ceramic (WC-Co) micro-tool fabrication by controlled inclined grinding (CIG)[J]. International Journal of Advanced Manufacturing Technology, 2019, 103(5-8):2151-2167. [67] WANG T, CHENG J, LIU H, et al. Ultra-precision grinding machine design and application in grinding the thin-walled complex component with small ball-end diamond wheel[J]. International Journal of Advanced Manufacturing Technology, 2019, 101(5-8):2097-2110. [68] WANG T, WU C, LIU H, et al. Configuration design and accuracy analysis of special grinding machine for thin-walled small concave surfaces[J]. Precision Engineering, 2019, 56:293-302. [69] 高万彬,陈明君,刘亚忠,等.基于A3200控制器的超精密机床控制系统的设计与应用[J].航空精密制造技术, 2017, 53(3):16-20. GAO Wanbin, CHEN Mingjun, LIU Yazhong, et al. Design and application of ultra-precision machine tool control system based on A3200 controller[J]. Aviation Precision Manufacturing Technology, 2017, 53(3):16-20. [70] JIANG X, GUO M, LI B. Active control of high-frequency tool-workpiece vibration in micro-grinding[J]. International Journal of Advanced Manufacturing Technology, 2018, 94(1-4):1429-1439. [71] WANG T, LIU H, WU C, et al. Three-dimensional modeling and theoretical investigation of grinding marks on the surface in small ball-end diamond wheel grinding[J]. International Journal of Mechanical Sciences, 2020, 173:105467. [72] WANG T, LIU H, WU C, et al. Interference and grinding characteristics in ultra-precision grinding of thin-walled complex structural component using a ball-end grinding wheel[J]. Chinese Journal of Aeronautics, 2021, 34(4):192-207. [73] WANG T, WU C, LIU H, et al. On-machine electric discharge truing of small ball-end fine diamond grinding wheels[J]. Journal of Materials Processing Technology, 2019, 277:116472. [74] PEVERINI L, KOZHEVNIKOV I V, ROMMEVEAUX A, et al. Ion beam profiling of aspherical X-ray mirrors[J]. Nuclear Instruments and Methods in Physics Research A, 2010, 616(2-3):115-118. [75] LAMIKIZ A, SANCHEZ J A, LACALLE L N L D, et al. Laser polishing techniques for roughness improvement on metallic surfaces[J]. International Journal of Nanomanufacturing, 2007, 1(4):490-498. [76] 陈逢军,苗想亮,唐宇,等.磨料液体射流抛光技术研究进展[J].中国机械工程, 2015, 26(22):3116-3123. CHEN Fengjun, MIAO Xiangliang, TANG Yu, et al. Research progresses on abrasive fluid jet polishing technology[J]. China Mechanical Engineering, 2015, 26(22):3116-3123. [77] MORI Y, YAMAUCHI K, ENDO K. Mechanism of atomic removal in elastic emission machining[J]. Precision Engineering, 1988, 10(1):24-28. [78] MORI Y, YAMAMURA K, SANO Y. Thinning of silicon-on-insulator wafers by numerically controlled plasma chemical vaporization machining[J]. Review of Scientific Instruments, 2004, 75(4):942-946. [79] JI S, ZENG X, JING M. A new method for free surface polishing based on soft-consolidation abrasive pneumatic wheel[C]//China-Japan International Conference on Ultra-Precision Machining (CJUMP). New York:IEEE, 2011:190-194. [80] KURIYAGAWA T, SAEKI M, SYOJI K. Electrorheological fluid-assisted ultra-precision polishing for small three-dimensional parts[J]. Precision Engineering, 2002, 26(4):370-380. [81] PROKHOROV I V, KORDONSKI W I, GLEB L K, et al. New high-precision magnetorheological instrumentbased method of polishing optics[J]. OSA OF&T Workshop Digest, 1992, 24:134-136. [82] GOLINI D, DEMARCO M, KORDONSKI W, et al. MRF polishes calcium fluoride to high quality[J]. Laser Focus World, 2001, 37(7):5-9. [83] GOLINI D, KORDONSKI W, DUMAS P, et al. Magnetorheological finishing (MRF) in commercial precision optics manufacturing[C]//Proceedings of SPIE Symposium on Optical Manufacturing and Testing III. Washington:Society of Photo-Optical Instrumentation Engineers, 1999:80-91. [84] SHOREY A B, JACOBS S D, KORDONSKI W I, et al. Experiments and observations regarding the mechanisms of glass removal in magnetorheological finishing[J]. Applied Optics, 2001, 40(1):20-33. [85] 尹韶辉,徐志强,陈逢军,等.小口径非球面斜轴磁流变抛光技术[J].机械工程学报, 2013, 49(17):33-38. YIN Shaohui, XU Zhiqiang, CHEN Fengjun, et al. Inclined axis magnetorheological finishing technology for small aspherical surface[J]. Journal of Mechanical Engineering, 2013, 49(17):33-38. [86] 尹韶辉,龚胜,何博文,等.小口径非球面斜轴磨削及磁流变抛光组合加工工艺及装备技术研究[J].机械工程学报, 2018, 54(21):205-211. YIN Shaohui, GONG Sheng, HE Bowen, et al. Development on synergistic process and machine tools integrated inclined axis grinding and magnetorheological polishing for small aspheric surface[J]. Journal of Mechanical Engineering, 2018, 54(21):205-211. [87] 阎秋生,廖博涛,路家斌,等.集群磁流变变间隙动压平坦化加工试验研究[J].机械工程学报, 2021, 57(19):230-238. YAN Qiusheng, LIAO Botao, LU Jiabin, et al. Experimental study on cluster magnetorheological variable gap dynamic pressure planarization finishing[J]. Journal of Mechanical Engineering, 2021, 57(19):230-238. [88] LIU H, CHEN M, YU B, et al. Configuration design and accuracy analysis of a novel magnetorheological finishing machine tool for concave surfaces with small radius of curvature[J]. Journal of Mechanical Science and Technology, 2016, 30(7):3301-3311. [89] CHEN M, LIU H, SU Y, et al. Design and fabrication of a novel magnetorheological finishing process for small concave surfaces using small ball-end permanent-magnet polishing head[J]. International Journal of Advanced Manufacturing Technology, 2016, 83(5-8):823-834. [90] CHEN M, LIU H, CHENG J, et al. Model of the material removal function and an experimental study on a magnetorheological finishing process using a small ball-end permanent-magnet polishing head[J]. Applied Optics, 2017, 56(19):5573-5582. [91] LIU H, CHENG J, WANG T, et al. Magnetorheological finishing of an irregular-shaped small-bore complex component using a small ball-end permanent-magnet polishing head[J]. Nanotechnology and Precision Engineering, 2019, 2(3):125-129. [92] XU J, LI D, CHEN M, et al. Process research of magnetorheological finishing with a small permanent magnet ball-end tool[J]. Nanotechnology and Precision Engineering, 2015, 13(4):244-250. [93] 刘赫男.半球谐振子磁流变抛光的关键技术研究[D].哈尔滨:哈尔滨工业大学, 2019. LIU Henan. Research on key technologies of magnetorheological finishing of hemispherical resonator[D]. Harbin:Harbin Institute of Technology, 2019. [94] 王金虎,袁巨龙,吕冰海,等.石英半球谐振子力流变抛光[J].飞控与探测, 2021, 4(1):60-66. WANG Jinhu, YUAN Julong, LÜ Binghai, et al. Shear rheological polishing of quartz hemispherical resonator[J]. Flight Control and Detection, 2021, 4(1):60-66. [95] 汪忠喜.半球谐振子内表面高效磁流变抛光[D].南京:南京航空航天大学, 2019. WANG Zhongxi. High-efficiency magnetorheological finishing of inner surface of hemispherical shell resonator[D]. Nanjing:Nanjing university of aeronautics and astronautics, 2019. [96] WONG L, SURATWALA T, FEIT M D, et al. The effect of HF/NH4F etching on the morphology of surface fractures on fused silica[J]. Journal of Non-Crystalline Solids, 2009, 355(13):797-810. [97] FERNANDES B C, PFIFFER M, CORMONT P, et al. Understanding the effect of wet etching on damage resistance of surface scratches[J]. Scientific Reports, 2018, 8:1337. [98] MANES K R, SPAETH M L, ADAMS J J, et al. Damage mechanisms avoided or managed for NIF large optics[J]. Fusion Science and Technology, 2016, 69(1):146-249. [99] YE H, LI Y, ZHANG Q, et al. Post-processing of fused silica and its effects on damage resistance to nanosecond pulsed UV lasers[J]. Applied Optics, 2016, 55(11):3017. [100] PFIFFER M, CORMONT P, NÉAUPORT J, et al. Effects of chemical etching on the surface quality and the laser induced damage threshold of fused silica optics[C]//Proceedings of SPIE Annual Laser Damage Symposium on Optical Materials for High-Power Lasers. Washington:Society of Photo-Optical Instrumentation Engineers, 2015:1001405. [101] PFIFFER M, CORMONT P, FARGIN E, et al. Effects of deep wet etching in HF/HNO3 and KOH solutions on the laser damage resistance and surface quality of fused silica optics at 351 nm[J]. Optics Express, 2017, 25(5):4607-4620. [102] 陈雪,任顺清,赵洪波,等.半球谐振子薄壁厚度不均匀性对陀螺精度的影响[J].空间控制技术与应用, 2009, 35(3):29-33. CHEN Xue, REN Shunqing, ZHAO Hongbo, et al. Effect of thickness nonuniformity of resonator on the HRG accuracy[J]. Aerospace Control and Application, 2009, 35(3):29-33. [103] NAGOURNEY T, CHO J Y, DARVISHIAN A, et al. Effect of metal annealing on the Q-factor of metalcoated fused silica micro shell resonators[C]//IEEE International Symposium on Inertial Sensors and Systems (ISISS). New York:IEEE, 2015:13-17. [104] GINER J, VALDEVIT L, SHKEL A M. Glass-blown Pyrex resonator with compensating Ti coating for reduction of TCF[C]//IEEE International Symposium on Inertial Sensors and Systems (ISISS). New York:IEEE, 2014:55-58. [105] THIELE S, REINA A, HEALEY P, et al. Engineering polycrystalline Ni films to improve thickness uniformity of the chemical-vapor-deposition-grown graphene films[J]. Nanotechnology, 2010, 21(1):015601. [106] 楚建宁,朱蓓蓓,许剑锋,等.半球谐振子镀膜残余应力对品质因数影响特性分析[J].飞控与探测, 2021, 4(1):52-59. CHU Jianning, ZHU Beibei, XU Jianfeng, et al. Character analysis of the influence of coating residual stress on quality factor for the hemispherical resonator[J]. Flight Control and Detection, 2021, 4(1):52-59. [107] 朱蓓蓓,刘青,许剑锋,等.半球谐振子金属化镀膜残余应力的测量方法及影响因素研究[J].真空, 2022, 59(2):55-61. ZHU Beibei, LIU Qing, XU Jianfeng, et al. Research on residual stress measuring method and influencing factors of metallized coating on hemispherical harmonic oscillator[J]. Vacuum, 2022, 59(2):55-61. |
[1] | 马传震, 刘赫男, 陈明君, 程健, 田金川, 周子涵. 半球谐振子几何参量对其热弹性阻尼影响研究[J]. 机械工程学报, 2024, 60(1): 75-84. |
[2] | 路阔, 李青松, 周鑫, 李兰, 吴宇列, 吴学忠, 肖定邦. 基于光阱力的新型传感技术[J]. 机械工程学报, 2020, 56(13): 16-31. |
[3] | 赵剑, 程凯, 高仁璟, 黄毓, 刘蓬勃. 柔性双稳态结构分岔跳跃模式的探讨[J]. 机械工程学报, 2019, 55(5): 74-81. |
[4] | 李永堂;付建华;雷步芳;贾璐;匡利华;程忠阳. 多元低合金耐磨钢破碎机衬板制造工艺研究[J]. , 2013, 49(12): 72-77. |
[5] | 施芹;丁荣峥;苏岩;裘安萍. 硅微陀螺仪器件级真空封装[J]. , 2009, 45(2): 243-246. |
[6] | 师汉民. 从外加工拓展到内加工——加工成形技术的一个新的发展动向[J]. , 2003, 39(11): 17-22. |
[7] | 白明光;张怀存;姚文席;王超然. 齿轮动态力互研法工艺研究[J]. , 2000, 36(1): 106-109. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||