• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2024, Vol. 60 ›› Issue (24): 45-55.doi: 10.3901/JME.2024.24.045

• 仪器科学与技术 • 上一篇    下一篇

扫码分享

非完备数据驱动的装备复合故障智能解耦方法

李巍华1,2, 蓝昊1, 陈祝云1,2, 黄如意2,3   

  1. 1. 华南理工大学机械与汽车工程学院 广州 510641;
    2. 人工智能与数字经济广东省实验室广州 广州 510335;
    3. 华南理工大学吴贤铭智能工程学院 广州 511442
  • 收稿日期:2024-01-15 修回日期:2024-10-16 出版日期:2024-12-20 发布日期:2025-02-01
  • 作者简介:李巍华,男,1973年出生,博士,教授,博士研究生导师。主要研究方向为工业智能、工业大数据、数字孪生、装备智能运维、预测性维护与健康管理、汽车智能驾驶(环境感知、路径规划与决策)。E-mail:whlee@scut.edu.cn;蓝昊,男,1998年出生,博士研究生。主要研究方向为装备智能故障诊断(复合故障智能诊断、可解释智能诊断)。E-mail:lanhao2021@163.com;黄如意(通信作者),男,1992年出生,博士,助理研究员。主要研究方向为装备智能故障诊断与预测性维护(复合故障智能解耦、装备剩余寿命预测)、工业大数据(多源信息融合)。E-mail:snowxiaoyu@hotmail.com
  • 基金资助:
    国家自然科学基金联合基金(U23B6001)、国家重点研发计划(2023YFF0713400)和“十四五”装备预研共用技术(50910050302)资助项目。

Incomplete Data Driven Intelligent Compound Fault Diagnosis Method for Machinery

LI Weihua1,2, LAN Hao1, CHEN Zhuyun1,2, HUANG Ruyi2,3   

  1. 1. School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou 510641;
    2. Guangdong Artificial Intelligent and Digital Economy Laboratory Guangzhou, Guangzhou 510335;
    3. Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou 511442
  • Received:2024-01-15 Revised:2024-10-16 Online:2024-12-20 Published:2025-02-01

摘要: 数据驱动的故障诊断方法在海量数据处理、判别特征学习和精确模式识别等方面具有显著优势,既为装备智能运维带来新的机遇,也面临着严峻的挑战:① 当前数据驱动方法的可靠性与有效性依赖于完备的带标签故障数据。然而工业场景下,装备监测数据存在标签信息缺失、故障数据欠完备、数据可利用率低等问题;② 复合故障是装备的典型故障。在缺乏复合故障数据的条件下,复合故障智能诊断的难度急剧增加,且鲜有针对复合故障智能诊断模型可解释性的研究。为应对上述挑战,提出一种非完备数据驱动的装备复合故障智能解耦方法。首先,结合小波核卷积层可从振动信号中提取可解释性特征的优势以及胶囊层在复合故障智能解耦方面的能力,构建小波胶囊网络;在此基础上,以非完备故障数据(仅含正常和单一故障样本, 缺乏复合故障样本)为输入,训练所提小波胶囊网络;最后,以某车型汽车五档变速器为研究对象,验证所提方法在复合故障智能解耦方面的有效性和可靠性,并对小波胶囊网络模型所提取的特征展开可解释性分析,从而提高模型诊断结果的可信度。试验结果表明,所提方法取得了较高的诊断精度,其习得的特征具有一定的可解释性,可为非完备数据下装备的复合故障诊断提供新的途径。

关键词: 复合故障故障诊断, 非完备数据, 小波核卷积, 胶囊网络, 可解释性分析

Abstract: Data driven fault diagnosis methods have significant advantages in mass data processing, discriminative feature learning and precision pattern recognition, which bring not only new opportunities for intelligent maintenance of machinery but also unsolved challenges:① The effectiveness and reliability of current data driven methods depend on the completeness of labelled fault data, whereas, in industrial scenarios, it is the often case that the label or repair information is missing, the fault data is lacking and the availability of the monitoring data is low;② Compound faults are common faults in equipment, resulting in the difficulty of intelligent fault diagnosis increasing dramatically when the compound fault data are unavailable, but there are few studies that focus on the interpretability of intelligent compound fault diagnosis models. To address the above challenges, an incomplete data driven intelligent compound fault diagnosis method, named wavelet capsule network, is proposed for industrial equipment. First, the wavelet capsule network is constructed by combining the wavelet kernel convolutional layer (WKL) and the capsule layers. Specifically, WKL is used to endow the model with the ability to extract interpretable features from vibration signals, and the capsule layers are introduced to decouple compound faults. Second, the wavelet capsule network is trained by incomplete fault data (just contains normal and single fault samples, and lacks compound fault samples). Finally, an experiment carried out on a five-speed transmission is used to validate the effectiveness of the proposed method. Furthermore, the interpretability analysis is performed on the features extracted by the proposed model to improve the credibility of the diagnosis result. The experimental results show that the proposed method achieves higher diagnosis accuracy than compared methods and the features extracted by the model are interpretable to a certain extent which might provide a novel solution to decoupling the compound fault with incomplete data.

Key words: compound fault diagnosis, incomplete data, wavelet kernel convolution, capsule network, interpretability analysis

中图分类号: