机械工程学报 ›› 2024, Vol. 60 ›› Issue (22): 241-256.doi: 10.3901/JME.2024.22.241
张大禹1,2, 王震坡1,2,3,4, 刘鹏1,2,3,4, 林倪1,2,3,4, 张照生1,2,3,4
收稿日期:
2024-01-05
修回日期:
2024-05-10
出版日期:
2024-11-20
发布日期:
2025-01-02
作者简介:
张大禹,男,1993年出生,博士研究生。主要研究方向为新能源汽车动力电池健康管理与新能源汽车大数据分析。E-mail:dayu_zhang@bit.edu.cn;王震坡,男,1976年出生,博士,教授,博士研究生导师。主要研究方向为动力电池成组理论与新能源汽车大数据分析。E-mail:wangzhenpo@bit.edu.cn;刘鹏(通信作者),男,1983年出生,博士,副教授,硕士研究生导师。主要研究方向为新能源汽车大数据分析。E-mail:bitliupeng@bit.edu.cn;林倪,男,1990年出生,博士,副研究员,硕士研究生导师。主要研究方向为动力电池健康、安全、成组与管理系统设计。E-mail:6120200190@qq.com;张照生,男,1984年出生,博士,副教授,硕士研究生导师。主要研究方向为新能源汽车大数据分析。E-mail:zhangzhaosheng@bit.edu.cn
基金资助:
ZHANG Dayu1,2, WANG Zhenpo1,2,3,4, LIU Peng1,2,3,4, LIN Ni1,2,3,4, ZHANG Zhaosheng1,2,3,4
Received:
2024-01-05
Revised:
2024-05-10
Online:
2024-11-20
Published:
2025-01-02
About author:
10.3901/JME.2024.22.241
摘要: 锂离子电池作为新能源汽车的核心部件,准确、高效的衰退机制辨识与健康状态估计对于提升动力电池系统的运行可靠性、降低安全风险以及残值评估具有重要意义。随着新能源汽车智能网联化程度的不断提高及大数据分析手段的快速发展,基于数据驱动的动力电池健康状态估计得到了广泛关注。为系统梳理锂离子电池的衰退机制及健康状态估计研究最新进展,从以下两方面进行总结:在衰退机制方面,分别从电池的负极、正极等结构出发,阐述了不同内部副反应对电池老化的影响,并结合新能源汽车实际运行场景分析了强关联外部使用因素对电池衰退的主导作用;在健康状态估计方面,根据不同数据驱动算法的特点及侧重点对现有研究进行了分类概述,分析比较其优点、局限性与应用场景,并进一步讨论各类典型方法在现阶段实车应用的可行性。最后,面向新能源汽车的实际运行需求,对动力电池健康状态估计领域存在的挑战与发展方向进行了总结与展望。
中图分类号:
张大禹, 王震坡, 刘鹏, 林倪, 张照生. 新能源汽车动力电池衰退机制与健康状态估计研究概述[J]. 机械工程学报, 2024, 60(22): 241-256.
ZHANG Dayu, WANG Zhenpo, LIU Peng, LIN Ni, ZHANG Zhaosheng. Overview of Research on Degradation Mechanism and State of Health Estimation for Traction Battery in New Energy Vehicles[J]. Journal of Mechanical Engineering, 2024, 60(22): 241-256.
[1] 国务院办公厅. 国务院办公厅关于印发新能源汽车产业发展规划(2021—2035年)的通知[EB/OL]. [2020-10-20]. http://www.gov.cn/zhengce/content/2020/11/02/c-ontent_ 5556716.htm. General Office of the State Council. Notice of the General Office of the State Council on the issuance of the development plan for the new energy vehicle industry (2021—2035)[EB/OL]. [2020-10-20]. http://www.gov.cn-/ zhengce/content/2020/11/02/c-ontent_5556716.htm. [2] 新能源汽车国家大数据联盟. 工信部:我国新能源汽车已累计推广1033万辆[EB/OL]. [2022-04-20]. http://www. gov.cn/xinwen/202204/19/content_5686140.htm. National Big Data Alliance for New Energy Vehicles. Ministry of Industry and Information Technology:China has promoted 10.33 million new energy vehicles in total[EB/OL]. [2022-04-20]. http://www.gov.cn/xinwen/ 2022-04/19/content_5686140.htm. [3] LU L G,HAN X B,LI J Q,et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources,2013,226:272-288. [4] BIRKL C R,ROBERTS M R,MCTURK E,et al. Degradation diagnostics for lithium ion cells[J]. Journal of Power Sources,2017,341:373-386. [5] XIONG R,PAN Y,SHEN W X,et al. Lithium-ion battery aging mechanisms and diagnosis method for automotive applications:Recent advances and perspectives[J]. Renewable & Sustainable Energy Reviews,2020,131:110048. [6] LI Y,LIU K L,FOLEY A M,et al. Data-driven health estimation and lifetime prediction of lithium-ion batteries:A review[J]. Renewable & Sustainable Energy Reviews,2019,113:109254. [7] 王震坡,袁昌贵,李晓宇. 新能源汽车动力电池安全管理技术挑战与发展趋势分析[J]. 汽车工程,2020,42(12):1606-1620. WANG Zhenpo,YUAN Changgui,LI Xiaoyu. An analysis on challenge and development trend of safety management technologies for traction battery in new energy vehicles[J]. Automotive Engineering,2020,42(12):1606-1620. [8] 王震坡,李晓宇,袁昌贵,等. 大数据下电动汽车动力电池故障诊断技术挑战与发展趋势[J]. 机械工程学报,2021,57(14):52-63. WANG Zhenpo,LI Xiaoyu,YUAN Changgui,et al. Challenge and prospects for fault diagnosis of power battery system for electrical vehicles based on big-data[J]. Journal of Mechanical Engineering,2021,57(14):52-63. [9] PLETT G L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs— Part 3. State and parameter estimation[J]. Journal of Power Sources,2004,134(2):277-292. [10] LIU D T,YIN X H,SONG Y C,et al. An on-line state of health estimation of lithium-ion battery using unscented particle filter[J]. IEEE Access,2018,6:40990-41001. [11] LI J,LANDERS R G,PARK J. A comprehensive single- particle-degradation model for battery state-of-health prediction[J]. Journal of Power Sources,2020,456:227950. [12] LYU Z Q,GAO R J,CHEN L. Li-ion battery state of health estimation and remaining useful life prediction through a model-data-fusion method[J]. IEEE Transactions on Power Electronics,2021,36(6):6228-6240. [13] VETTER J,NOVAK P,WAGNER M R,et al. Ageing mechanisms in lithium-ion batteries[J]. Journal of Power Sources,2005,147(1-2):269-281. [14] HAN X B,LU L G,ZHENG Y J,et al. A review on the key issues of the lithium ion battery degradation among the whole life cycle[J]. Etransportation,2019(1):100005. [15] DUBARRY M,QIN N,BROOKER P. Calendar aging of commercial Li-ion cells of different chemistries—A review[J]. Current Opinion in Electrochemistry,2018,9:106-113. [16] STROE D I,SWIERCZYNSKI M,KAER S K,et al. Degradation behavior of lithium-ion batteries during calendar ageing-the case of the internal resistance increase[J]. IEEE Transactions on Industry Applications,2018,54(1):517-525. [17] VERMA P,MAIRE P,NOVAK P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries[J]. Electrochimica Acta,2010,55(22):6332-6341. [18] AN S J,LI J L,DANIEL C,et al. The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling[J]. Carbon,2016,105:52-76. [19] JIANG X M,CHEN Y J,MENG X K,et al. The impact of electrode with carbon materials on safety performance of lithium-ion batteries:A review[J]. Carbon,2022,191:448-470. [20] LIU Q Q,DU C Y,SHEN B,et al. Understanding undesirable anode lithium plating issues in lithium-ion batteries[J]. Rsc Advances,2016,6(91):88683-88700. [21] MEI W X,ZHANG L,SUN J H,et al. Experimental and numerical methods to investigate the overcharge caused lithium plating for lithium ion battery[J]. Energy Storage Materials,2020,32:91-104. [22] RIDGWAY P,ZHENG H H,BELLO A F,et al. Comparison of cycling performance of lithium ion cell anode graphites[J]. Journal of the Electrochemical Society,2012,159(5):A520-A524. [23] AGUBRA V,FERGUS J. Lithium ion battery anode aging mechanisms[J]. Materials,2013,6(4):1310-1325. [24] LIN X K,KHOSRAVINIA K,HU X S,et al. Lithium plating mechanism,detection,and mitigation in lithium-ion batteries[J]. Progress in Energy and Combustion Science,2021,87:100953. [25] KIM S,HUANG H Y S. Mechanical stresses at the cathode-electrolyte interface in lithium-ion batteries[J]. Journal of Materials Research,2016,31(22):3506-3512. [26] DU PASQUIER A,BLYR A,CRESSENT A,et al. An update on the high temperature ageing mechanism in LiMn2O4-based li-ion cells[J]. Journal of Power Sources,1999,81:54-59. [27] 李晓宇. 电动汽车动力电池状态估计及衰退评价策略研究[D]. 北京:北京理工大学,2021. LI Xiaoyu. Research on state estimation and degradation evaluation strategy of electric vehicle power battery[D]. Beijing:Beijing Institute of Technology,2021. [28] 方德宇,楚潇,刘涛,等. 基于数据-模型驱动的锂离子电池健康状态估计[J]. 电气工程学报,2022,17(4):20-31. FANG Deyu,CHU Xiao,LIU Tao,et al. Research on health assessment method of lithium-ion battery based on data-model hybrid drive[J]. Journal of Electrical Engineering,2022,17(4):20-31. [29] SARASKETA-ZABALA E,GANDIAGA I,RODRIGUEZ-MARTINEZ L M,et al. Calendar ageing analysis of a LiFePO4/graphite cell with dynamic model validations:Towards. realistic lifetime predictions[J]. Journal of Power Sources,2014,272:45-57. [30] LIU K L,ASHWIN T R,HU X S,et al. An evaluation study of different modelling techniques for calendar ageing prediction of lithium-ion batteries[J]. Renewable & Sustainable Energy Reviews,2020,131:110017. [31] NAUMANN M,SCHIMPE M,KEIL P,et al. Analysis and modeling of calendar aging of a commercial LiFePO4/graphite cell[J]. Journal of Energy Storage,2018,17:153-169. [32] WALDMANN T,WILKA M,KASPER M,et al. Temperature dependent ageing mechanisms in lithium-ion batteries-A post-mortem study[J]. Journal of Power Sources,2014,262:129-135. [33] TANG X P,WANG Y J,ZOU C F,et al. A novel framework for lithium-ion battery modeling considering uncertainties of temperature and aging[J]. Energy Conversion and Management,2019,180:162-170. [34] GUAN T,SUN S,GAO Y Z,et al. The effect of elevated temperature on the accelerated aging of LiCoO2/mesocarbon microbeads batteries[J]. Applied Energy,2016,177:1-10. [35] ZHANG G X,WEI X Z,HAN G S,et al. Lithium plating on the anode for lithium-ion batteries during long-term low temperature cycling[J]. Journal of Power Sources,2021,484:229312. [36] FLEISCHHAMMER M,WALDMANN T,BISLE G,et al. Interaction of cyclic ageing at high-rate and low temperatures and safety in lithium-ion batteries[J]. Journal of Power Sources,2015,274:432-439. [37] GUAN T,SUN S,YU F B,et al. The degradation of LiCoO2/graphite batteries at different rates[J]. Electrochimica Acta,2018,279:204-212. [38] XIE W L,HE R,GAO X L,et al. Degradation identification of LiNi0.8Co0.1Mn0.1O2/graphite lithium-ion batteries under fast charging conditions[J]. Electrochimica Acta,2021,392:138979. [39] ZHANG L L,LIU J L,DU L,et al. Identifying the aging mechanism in multiple overdischarged LiCoO2/ mesocarbon microbeads batteries[J]. Ceramics International,2021,47(15):21253-21262. [40] QIAN K,LI Y Y,HE Y B,et al. Abuse tolerance behavior of layered oxide-based Li-ion battery during overcharge and over-discharge[J]. Rsc Advances,2016,6(80):76897-76904. [41] WATANABE S,KINOSHITA M,HOSOKAWA T,et al. Capacity fade of LiAlyNi1-x-yCoxO2 cathode for lithium-ion batteries during accelerated calendar and cycle life tests (surface analysis of LiAlyNi1-x-yCoxO2 cathode after cycle tests in restricted depth of discharge ranges)[J]. Journal of Power Sources,2014,258:210-217. [42] SHU J,SHUI M A,HUANG F T,et al. Comparative study on surface behaviors of copper current collector in electrolyte for lithium-ion batteries[J]. Electrochimica Acta,2011,56(8):3006-3014. [43] DAI S W,CHEN J,REN Y J,et al. Electrochemical corrosion behavior of the copper current collector in the electrolyte of lithium-ion batteries[J]. International Journal of Electrochemical Science,2017,12(11):10589-10598. [44] HAN W J,WIK T,KERSTEN A,et al. Next-generation battery management systems:Dynamic reconfiguration[J]. IEEE Industrial Electronics Magazine,2020,14(4):20-31. [45] GOLLA-SCHINDLER U,ZEIBIG D,PRICKLER L,et al. Characterization of degeneration phenomena in lithium-ion batteries by combined microscopic techniques[J]. Micron,2018,113:10-19. [46] WALDMANN T,ITURRONDOBEITIA A,KASPER M,et al. Review-post-mortem analysis of aged lithium-ion batteries:Disassembly methodology and physico-chemical analysis techniques[J]. Journal of the Electrochemical Society,2016,163(10):A2149-A2164. [47] 佘承其,张照生,刘鹏,等. 大数据分析技术在新能源汽车行业的应用综述——基于新能源汽车运行大数据[J]. 机械工程学报,2019,55(20):3-16. SHE Chengqi,ZHANG Zhaosheng,LIU Peng,et al. Overview of the application of big data analysis technology in new energy vehicle industry:Based on operating big data of new energy vehicle[J]. Journal of Mechanical Engineering,2019,55(20):3-16. [48] CHEN X,LIU X Y,SHEN X,et al. Applying machine learning to rechargeable batteries:From the microscale to the macroscale[J]. Angewandte Chemie-International Edition,2021,60(46):24354-24366. [49] XIONG R,LI L L,TIAN J P. Towards a smarter battery management system:A critical review on battery state of health monitoring methods[J]. Journal of Power Sources,2018,405:18-29. [50] ANSEAN D,GARCIA V M,GONZALEZ M,et al. Lithium-ion battery degradation indicators via incremental capacity analysis[J]. IEEE Transactions on Industry Applications,2019,55(3):2992-3002. [51] BLOOM I,JANSEN A N,ABRAHAM D P,et al. Differential voltage analyses of high-power,lithium-ion cells 1. Technique and application[J]. Journal of Power Sources,2005,139(1-2):295-303. [52] PASTOR-FERNANDEZ C,YU T F,WIDANAGE W D,et al. Critical review of non-invasive diagnosis techniques for quantification of degradation modes in lithium-ion batteries[J]. Renewable & Sustainable Energy Reviews,2019,109:138-159. [53] LI X Y,YUAN C G,WANG Z P. State of health estimation for Li-ion battery via partial incremental capacity analysis based on support vector regression[J]. Energy,2020,203:117852. [54] SCHIFFER Z J,CANNARELLA J,ARNOLD C B. Strain derivatives for practical charge rate characterization of lithium ion electrodes[J]. Journal of the Electrochemical Society,2016,163(3):A427-A433. [55] LI X Y,WANG Z P,ZHANG L,et al. State-of-health estimation for Li-ion batteries by combing the incremental capacity analysis method with grey relational analysis[J]. Journal of Power Sources,2019,410:106-114. [56] TIAN J P,XIONG R,YU Q Q. Fractional-order model-based incremental capacity analysis for degradation state recognition of lithium-ion batteries[J]. IEEE Transactions on Industrial Electronics,2019,66(2):1576-1584. [57] WANG L M,PAN C F,LIU L,et al. On-board state of health estimation of LiFePO4 battery pack through differential voltage analysis[J]. Applied Energy,2016,168:465-472. [58] ZHANG S Z,GUO X,DOU X X,et al. A rapid online calculation method for state of health of lithium-ion battery based on coulomb counting method and differential voltage analysis[J]. Journal of Power Sources,2020,479:228740. [59] 李雨佳,欧阳权,刘灏仪,等. 基于支持向量机与改进高斯过程混合模型的车用电池容量预测方法[J]. 电气工程学报,2024,19(1):87-96. LI Yujia,OUYANG Quan,LIU Haoyi,et al. Vehicle battery capacity prediction based on hybrid model of support vector machine and improved Gaussian process[J]. Journal of Electrical Engineering,2024,19(1):87-96. [60] 孙振宇,王震坡,刘鹏,等. 新能源汽车动力电池系统故障诊断研究综述[J]. 机械工程学报,2021,57(14):87-104. SUN Zhenyu,WANG Zhenpo,LIU Peng,et al. Overview of fault diagnosis in new energy vehicle power battery system[J]. Journal of Mechanical Engineering,2021,57(14):87-104. [61] MERLA Y,WU B,YUFIT V,et al. Novel application of differential thermal voltammetry as an in-depth state- of-health diagnosis method for lithium-ion batteries[J]. Journal of Power Sources,2016,307:308-319. [62] WU B,YUFIT V,MERLA Y,et al. Differential thermal voltammetry for tracking of degradation in lithium-ion batteries[J]. Journal of Power Sources,2015,273:495-501. [63] WANG Z P,YUAN C G,LI X Y. Lithium battery state-of-health estimation via differential thermal voltammetry with gaussian process regression[J]. IEEE Transactions on Transportation Electrification,2021,7(1):16-25. [64] WU Peihao,LYU Nawei,SONG Yuhang,et al. Li-ion battery failure warning methods for energy-storage systems[J]. Chinese Journal of Electrical Engineering,2024,10(1):86-100. [65] LI Kuijie,LI Yalun,RUI Xinyu,et al. Experimental study on the effect of state of charge on failure propagation characteristics within battery modules[J]. Chinese Journal of Electrical Engineering,2023,9(3):3-14. [66] CANNARELLA J,ARNOLD C B. State of health and charge measurements in lithium-ion batteries using mechanical stress[J]. Journal of Power Sources,2014,269:7-14. [67] MOHTAT P,LEE S,SIEGEL J B,et al. Comparison of expansion and voltage differential indicators for battery capacity fade[J]. Journal of Power Sources,2022,518:230714. [68] MA Z Y,WANG Z P,XIONG R,et al. A mechanism identification model based state-of-health diagnosis of lithium-ion batteries for energy storage applications[J]. Journal of Cleaner Production,2018,193:379-390. [69] BUTLER K T,DAVIES D W,CARTWRIGHT H,et al. Machine learning for molecular and materials science[J]. Nature,2018,559(7715):547-555. [70] DENG Y W,YING H J,JIAQIANG E,et al. Feature parameter extraction and intelligent estimation of the state-of-health of lithium-ion batteries[J]. Energy,2019,176:91-102. [71] CHEHADE A A,HUSSEIN A A. A collaborative gaussian process regression model for transfer learning of capacity trends between li-ion battery cells[J]. IEEE Transactions on Vehicular Technology,2020,69(9):9542-9552. [72] YANG N K,SONG Z Y,HOFMANN H,et al. Robust state of health estimation of lithium-ion batteries using convolutional neural network and random forest[J]. Journal of Energy Storage,2022,48:103857. [73] DAI H D,ZHAO G C,LIN M Q,et al. A novel estimation method for the state of health of lithium-ion battery using prior knowledge-based neural network and Markov chain[J]. IEEE Transactions on Industrial Electronics,2019,66(10):7706-7716. [74] SEVERSON K A,ATTIA P M,JIN N,et al. Data-driven prediction of battery cycle life before capacity degradation[J]. Nature Energy,2019,4(5):383-391. [75] WU J,CUI X C,ZHANG H,et al. Health prognosis with optimized feature selection for lithium-ion battery in electric vehicle applications[J]. IEEE Transactions on Power Electronics,2021,36(11):12646-12655. [76] GOU B,XU Y,FENG X. An ensemble learning-based data-driven method for online state-of-health estimation of lithium-ion batteries[J]. IEEE Transactions on Transportation Electrification,2021,7(2):422-436. [77] ATTIA P M,GROVER A,JIN N,et al. Closed-loop optimization of fast-charging protocols for batteries with machine learning[J]. Nature,2020,578(7795):397-402. [78] HU X S,CHE Y H,LIN X K,et al. Health prognosis for electric vehicle battery packs:A data-driven approach[J]. IEEE-ASME Transactions on Mechatronics,2020,25(6):2622-2632. [79] DENG Z W,HU X S,XIE Y,et al. Battery health evaluation using a short random segment of constant current charging[J]. Iscience,2022,25(5):104260. [80] TIAN J P,XIONG R,SHEN W X,et al. Deep neural network battery charging curve prediction using 30 points collected in 10 min[J]. Joule,2021,5(6):1521-1534. [81] LI Y H,LI K,LIU X,et al. Lithium-ion battery capacity estimation-A pruned convolutional neural network approach assisted with transfer learning[J]. Applied Energy,2021,285:116410. [82] DENG Z W,LIN X K,CAI J W,et al. Battery health estimation with degradation pattern recognition and transfer learning[J]. Journal of Power Sources,2022,525:231027. [83] KHALEGHI S,FIROUZ Y,VAN MIERLO J,et al. Developing a real-time data-driven battery health diagnosis method,using time and frequency domain condition indicators[J]. Applied Energy,2019,255:113813. [84] SHE C Q,WANG Z P,SUN F C,et al. Battery aging assessment for real-world electric buses based on incremental capacity analysis and radial basis function neural network[J]. IEEE Transactions on Industrial Informatics,2020,16(5):3345-3354. [85] WANG X Y,WEI X Z,DAI H F. Estimation of state of health of lithium-ion batteries based on charge transfer resistance considering different temperature and state of charge[J]. Journal of Energy Storage,2019,21:618-631. [86] PAN H H,LU Z Q,WANG H M,et al. Novel battery state-of-health online estimation method using multiple health indicators and an extreme learning machine[J]. Energy,2018,160:466-477. [87] YANG D,WANG Y J,PAN R,et al. State-of-health estimation for the lithium-ion battery based on support vector regression[J]. Applied Energy,2018,227:273-283. [88] NG M F,ZHAO J,YAN Q Y,et al. Predicting the state of charge and health of batteries using data-driven machine learning[J]. Nature Machine Intelligence,2020,2(3):161-170. [89] WU Peihao,LYU Nawei,SONG Yuhang,et al. Li-ion battery failure warning methods for energy-storage systems[J]. Chinese Journal of Electrical Engineering,2024,10(1):86-100. [90] RASHIDI H H,TRAN N K,BETTS E V,et al. Artificial intelligence and machine learning in pathology:The present landscape of supervised methods[J]. Academic Pathology,2019,6:2374289519873088. [91] LOVE B C. Comparing supervised and unsupervised category learning[J]. Psychonomic Bulletin & Review,2002,9(4):829-835. [92] 贾俊,胡晓松,邓忠伟,等. 数据驱动的锂离子电池健康状态综合评分及异常电池筛选[J]. 机械工程学报,2021,57(14):141-149,159. JIA Jun,HU Xiaosong,DENG Zhongwei,et al. Data-driven comprehensive evaluation of lithium-ion battery state of health and abnormal battery screening[J]. Journal of Mechanical Engineering,2021,57(14):141-149,159. [93] TU E,YANG J. A review of semi-supervised learning theories and recent advances[J]. Journal of Shanghai Jiaotong University,2018,52(10):1280-1291. [94] BERECIBAR M,DEVRIENDT F,DUBARRY M,et al. Online state of health estimation on NMC cells based on predictive analytics[J]. Journal of Power Sources,2016,320:239-250. [95] NAHA A,KHANDELWAL A,AGARWAL S,et al. Internal short circuit detection in Li-ion batteries using supervised machine learning[J]. Scientific Reports,2020,10(1):1301. [96] YANG F F,WANG D,ZHAO Y,et al. A study of the relationship between coulombic efficiency and capacity degradation of commercial lithium-ion batteries[J]. Energy,2018,145:486-495. [97] YANG F F,SONG X B,DONG G Z,et al. A coulombic efficiency-based model for prognostics and health estimation of lithium-ion batteries[J]. Energy,2019,171:1173-1182. [98] LI X Y,DAI K W,WANG Z P,et al. Lithium-ion batteries fault diagnostic for electric vehicles using sample entropy analysis method[J]. Journal of Energy Storage,2020,27:101121. [99] SHANG Y L,LU G P,KANG Y Z,et al. A multi-fault diagnosis method based on modified sample entropy for lithium-ion battery strings[J]. Journal of Power Sources,2020,446:227275. [100] HU X S,LI S E,JIA Z Z,et al. Enhanced sample entropy-based health management of Li-ion battery for electrified vehicles[J]. Energy,2014,64:953-960. [101] LADPLI P,KOPSAFTOPOULOS F,CHANG F K. Estimating state of charge and health of lithium-ion batteries with guided waves using built-in piezoelectric sensors/actuators[J]. Journal of Power Sources,2018,384:342-354. |
[1] | 吴吉展, 魏沛堂, 吴少杰, 刘怀举, 朱才朝. 航空齿轮钢滚动接触疲劳性能预测与表面完整性优化[J]. 机械工程学报, 2024, 60(8): 81-93. |
[2] | 蒋翔宇, 冯毅雄, 洪兆溪, 胡炳涛, 司恒远, 谭建荣. 基于多级数据融合的核电站运行功能健康状态评估[J]. 机械工程学报, 2024, 60(4): 200-211. |
[3] | 戴国洪, 张道涵, 彭思敏, 苗一凡, 卓悦, 杨瑞鑫, 于全庆. 人工智能在动力电池健康状态预估中的研究综述[J]. 机械工程学报, 2024, 60(4): 391-408. |
[4] | 刘文学, 侯聪, 杨亚联, 陈智航, 韩杰, 胡晓松. 面向城市空中交通的电动飞行汽车关键性能指标分析[J]. 机械工程学报, 2024, 60(22): 257-275. |
[5] | 朱海华, 王健杰, 李霏, 刘长春, 蔡祺祥. 基于特征选择和SSA-LSTM的车间订单剩余完工时间预测[J]. 机械工程学报, 2024, 60(20): 388-402. |
[6] | 吕志军, 褚铭, 周亚勤, 肖雷, 李宏亮. 物理模拟与数据驱动混合的Z型立柱片剪切刚度认知预测方法[J]. 机械工程学报, 2024, 60(2): 50-61. |
[7] | 蒋帅, 陈铖, 段砚州, 熊瑞. 温度和老化影响下的锂离子电池荷电状态和健康状态联合估计方法研究[J]. 机械工程学报, 2024, 60(18): 266-275. |
[8] | 陈吉清, 陶洪达, 兰凤崇, 李伟健, 蒋心平. 低温冷源对动力电池包内部温湿特性影响分析[J]. 机械工程学报, 2024, 60(14): 227-237. |
[9] | 刘征宇, 张政, 郭乐凯, 孟辉, 刘项. 基于经验模态分解的锂离子电池健康状态预测[J]. 机械工程学报, 2024, 60(14): 272-281. |
[10] | 洪吉超, 张昕阳, 徐晓明, 李仁政, 金帅阳. 基于多熵融合的动力电池故障诊断与应用研究[J]. 机械工程学报, 2024, 60(12): 301-312. |
[11] | 谭志朴, 秦国华, 娄维达, 吴竹溪. 基于伯努利分布与混合驱动模型的铣削稳定性高精判断方法[J]. 机械工程学报, 2024, 60(11): 318-331. |
[12] | 邵海东, 肖一鸣, 颜深. 仿真数据驱动的改进无监督域适应轴承故障诊断[J]. 机械工程学报, 2023, 59(3): 76-85. |
[13] | 周航, 刘晓龙, 张梦迪, 孙金磊, 程泽. 基于简单循环单元的储能锂离子电池SOC和SOH联合估计方法*[J]. 电气工程学报, 2023, 18(3): 332-340. |
[14] | 杨世春, 卢宇, 周思达, 刘仕强, 王芳, 陈飞. 车用动力电池标准体系研究与分析[J]. 机械工程学报, 2023, 59(22): 3-19. |
[15] | 庞晓青, 李佳承, 刘文学, 邓忠伟, 胡晓松. 模型与数据融合的大尺寸快充锂电池分布式温度估计[J]. 机械工程学报, 2023, 59(22): 20-32. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||