• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2024, Vol. 60 ›› Issue (20): 327-338.doi: 10.3901/JME.2024.20.327

• 交叉与前沿 • 上一篇    下一篇

扫码分享

基于容积调节与蓄能稳压的波浪能转换液压提能系统特性仿真研究

刘常海1,2, 费俊凯1, 赵志学3, 吴俊国1, 胡敏1, 高文智1, 曾亿山1   

  1. 1. 合肥工业大学机械工程学院 合肥 230009;
    2. 浙江大学流体动力与机电系统国家重点实验室 杭州 310027;
    3. 哈尔滨工业大学机电工程学院 哈尔滨 150001
  • 收稿日期:2023-10-07 修回日期:2024-04-27 出版日期:2024-10-20 发布日期:2024-11-30
  • 通讯作者: 胡敏,男,1985年出生,博士,讲师,硕士研究生导师。主要研究方向为流体传动与控制。E-mail:minhu@hfut.edu.cn
  • 作者简介:刘常海,男,1988年出生,博士,讲师,硕士研究生导师。主要研究方向为波浪能开发与利用、流体传动与控制。E-mail:liuchanghai@hfut.edu.cn
  • 基金资助:
    国家自然科学基金(52005144,52075139,51905139);中央高校基本科研业务费(JZ2022HGTB0272,JZ2021HGB0090)和流体动力与机电系统国家重点实验室开放基金课题(GZKF-202015)资助项目。

Simulation Study on the Performance of Hydraulic Power Take-off System of Wave Energy Conversion Based on the Volumetric Regulation and Energy-storage Principle

LIU Changhai1,2, FEI Junkai1, ZHAO Zhixue3, WU Junguo1, HU Min1, GAO Wenzhi1, ZENG Yishan1   

  1. 1. School of Mechanical Engineering, Hefei University of Technology, Hefei 230009;
    2. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027;
    3. School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001
  • Received:2023-10-07 Revised:2024-04-27 Online:2024-10-20 Published:2024-11-30

摘要: 为提高液压式波浪能转换装置的运行特性,采用液压变压器作为系统压力和流量的调节元件,提出一种基于容积调节和蓄能稳压的液压提能系统。以点吸收式波浪能转换装置为例,建立浮子水动力模型和非线性液压提能系统模型。通过模拟波浪与液压提能系统在0.3~2 rad/s波浪频率范围内的相互作用,探究液压提能系统的动力响应,以及波浪频率对提能系统响应特性和能量转换特性的影响规律。结果表明:液压缸腔室压力和液压提能系统作用力呈近似方波变化,并伴有短暂高频振荡;随波浪频率的增大,液压缸相对锁住时间减少,相对捕能做功时间增多;液压缸位移幅值与液压缸捕获功率峰均比减小,而液压提能系统作用力幅值、液压马达平均流量和转速、液压缸捕获功率和液压马达输出功率均先增大后减小;液压提能系统能量转换效率先减小而后增大,在所研究波况下均可达80%以上,优于恒压式液压提能系统。

关键词: 波浪能, 液压系统, 容积调节, 动力响应, 转换特性

Abstract: A novel hydraulic power take-off(PTO) system based on the volumetric regulation and energy-storage principle is proposed to improve the performance of the hydraulic-type wave energy converters(WECs). In the novel hydraulic PTO system, the hydraulic transformer is adopted to regulate system pressure and flowrate. A point-absorber WEC is focused on here, and the hydrodynamic model of the floater and the nonlinear model of the hydraulic PTO system are presented. Through the simulation of the interaction between the wave and the hydraulic PTO system in the frequency range of 0.3-2 rad/s, the dynamic response of the PTO system and the influence of wave frequency on the dynamic-response and energy-conversion characteristics are investigated. Results show that the cylinder chamber pressure and the hydraulic PTO force resemble an approximately square wave variation, and high frequent fluctuation is occurred. As wave frequency increases, the relative latching duration of the hydraulic cylinder decreases, while the relative energy-capture duration increases. The displacement amplitude of the hydraulic piston and the peak-to-average captured power ratio of the hydraulic cylinder decrease, while the hydraulic PTO force, the average flowrate and rotational speed of the hydraulic motor, the captured power of the hydraulic cylinder and the output power of the hydraulic motor increase first and then decrease. The energy-conversion efficiency of the hydraulic PTO system decreases first and then increases with the increasing wave frequency, and it can reach a value more than 80%, which is larger than that of a constant-pressure type hydraulic PTO system.

Key words: wave energy, hydraulic system, volumetric regulation, dynamic response, conversion performance

中图分类号: