机械工程学报 ›› 2024, Vol. 60 ›› Issue (20): 1-23.doi: 10.3901/JME.2024.20.001
方续东1,2,3,4,5, 邓武彬1,2,3,4, 吴祖堂6, 李进6, 吴晨1,2,3,4, 前田龙太郎1,2,3,4, 田边1,2,3,4,5, 赵立波1,2,3,4,5, 林启敬1,2,3,4,5, 张仲恺1,2,3,4,5, 韩香广1,2,3,4,5, 蒋庄德1,2,3,4,5
收稿日期:
2023-09-17
修回日期:
2024-04-21
出版日期:
2024-10-20
发布日期:
2024-11-30
通讯作者:
韩香广,男,1988年出生,博士,助理教授。主要研究方向为MEMS压力传感器。E-mail:xiangguang@xjtu.edu.cn
作者简介:
方续东,男,1985年出生,副教授。主要研究方向为智能传感器与微纳测试技术。E-mail:dongfangshuo30@xjtu.edu.cn;赵立波,男,1978年出生,博士,教授,博士研究生导师。主要研究方向为高端MEMS智能传感器与微纳米技术、柔性智能传感与人机交互、量子传感与量子精密测量、能量收集及自供电传感技术。E-mail:libozhao@xjtu.edu.cn
基金资助:
FANG Xudong1,2,3,4,5, DENG Wubin1,2,3,4, WU Zutang6, LI Jin6, WU Chen1,2,3,4, MAEDA Ryutaro1,2,3,4, TIAN Bian1,2,3,4,5, ZHAO Libo1,2,3,4,5, LIN Qijing1,2,3,4,5, ZHANG Zhongkai1,2,3,4,5, HAN Xiangguang1,2,3,4,5, JIANG Zhuangde1,2,3,4,5
Received:
2023-09-17
Revised:
2024-04-21
Online:
2024-10-20
Published:
2024-11-30
摘要: 随着对疾病预测和诊断需求的不断增长,面向人民生命健康的科技创新成为迫切需求,监测生理信号的可穿戴装备越来越受到关注。呼吸是反映人体生理状态的重要参数,例如肺炎、睡眠呼吸暂停综合征、肺栓塞等重大疾病往往伴随着人体呼吸参数的变化,监测呼吸参数可以有效地预测和诊断相关疾病,但其可穿戴监测技术尚未取得显著进展。惯性传感器由于低侵入性、重量轻等优点,非常适合开发成监测呼吸信号的可穿戴装备。首先从惯性传感器监测呼吸的发展历程展开,详细论述了惯性传感器监测呼吸的四个发展阶段(呼吸波形的提取、呼吸暂停的识别、睡眠姿态识别以及走跑时的呼吸监测)、惯性传感器监测呼吸的方法以及惯性传感器的数据处理方式。其次,对惯性传感器监测呼吸的不同阶段进行了对比分析,详细地阐述了不同方法的优缺点。再次,对惯性传感器监测呼吸存在的挑战和未来发展方向进行了总结和展望。最后,对基于惯性传感器可穿戴呼吸监测装备的开发提出了一些建议和预测。
中图分类号:
方续东, 邓武彬, 吴祖堂, 李进, 吴晨, 前田龙太郎, 田边, 赵立波, 林启敬, 张仲恺, 韩香广, 蒋庄德. 基于惯性传感器的呼吸测量技术综述[J]. 机械工程学报, 2024, 60(20): 1-23.
FANG Xudong, DENG Wubin, WU Zutang, LI Jin, WU Chen, MAEDA Ryutaro, TIAN Bian, ZHAO Libo, LIN Qijing, ZHANG Zhongkai, HAN Xiangguang, JIANG Zhuangde. Respiration Measurement Technology Based on Inertial Sensors:A Review[J]. Journal of Mechanical Engineering, 2024, 60(20): 1-23.
[1] CHERNIACK N S,LONGOBARDO G,EVANGELISTA C J. Causes of cheyne-stokes respiration[J]. Neurocritical Care,2005,3(3):271-279. [2] YUASA Y,TAKAHASHI K,SUZUKI K. Wearable flexible device for respiratory phase measurement based on sound and chest movement[C]//2017 IEEE International Conference on Systems,Man,and Cybernetics (SMC).IEEE,2017:2378-2383. [3] NABI F G,SUNDARAJ K,KIANG L C,et al. Wheeze sound analysis using computer-based techniques:A systematic review[J]. Biomedical Engineering/ Biomedizinische Technik,2019,64(1):1-28. [4] LI S H,LIN B S,TSAI C H,et al. Design of wearable breathing sound monitoring system for real-time wheeze detection[J]. Sensors,Multidisciplinary Digital Publishing Institute,2017,17(1):171. [5] BROOKES C N,WHITTAKER J D,MOULTON C,et al. The PEP respiratory monitor:A validation study[J]. Emergency Medicine Journal,2003,20(4):326-328. [6] LIAO S H,CHEN W J,LU M S C. A CMOS MEMS capacitive flow sensor for respiratory monitoring[J]. IEEE Sensors Journal,2013,13(5):1401-1402. [7] WEI C L,LIN C F,TSENG I T. A novel MEMS respiratory flow sensor[J]. IEEE Sensors Journal,2009,10(1):16-18. [8] GÜDER F,AINLA A,REDSTON J,et al. Paper-based electrical respiration sensor[J]. Angewandte Chemie International Edition,2016,55(19):5727-5732. [9] KANO S,FUJII M. Battery-powered wearable respiration sensor chip with nanocrystal thin film[C]//2017 IEEE SENSORS.IEEE,2017:1-3. [10] BASRA A,MUKHOPADHAYAY B,KAR S. Temperature sensor based ultra low cost respiration monitoring system[C]//20179th International Conference on Communication Systems and Networks (COMSNETS).IEEE,2017:530-535. [11] AGNIHOTRI A. Human body respiration measurement using digital temperature sensor with I2c interface[J]. International Journal of Scientific and Research Publications,2013,3(3):8. [12] MAHBUB I,PULLANO S A,WANG H,et al. A low-power wireless piezoelectric sensor-based respiration monitoring system realized in CMOS process[J]. IEEE Sensors Journal,2017,17(6):1858-1864. [13] SHAHSHAHANI A,BHADRA S,ZILIC Z. A continuous respiratory monitoring system using ultrasound piezo transducer[C]//2018 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE,2018:1-4. [14] CHEN A,ZHANG J,ZHAO L,et al. Machine-learning enabled wireless wearable sensors to study individuality of respiratory behaviors[J]. Biosensors and Bioelectronics,2021,173:112799. [15] SEETON R,ADLER A. Sensitivity of a single coil electromagnetic sensor for non-contact monitoring of breathing[C]//200830th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE,2008:518-521. [16] NAKAJIMA K,TAMURA T,MIIKE H. Monitoring of heart and respiratory rates by photoplethysmography using a digital filtering technique[J]. Medical Engineering & Physics,1996,18(5):365-372. [17] PALLAS-ARENY R,COLOMINAS-BALAGUE J,ROSELL F J. The effect of respiration-induced heart movements on the ECG[J]. IEEE Transactions on Biomedical Engineering,1989,36(6):585-590. [18] DASH S,SHELLEY K H,SILVERMAN D G,et al. Estimation of respiratory rate from ECG,photoplethysmogram,and piezoelectric pulse transducer signals:a comparative study of time–frequency methods[J]. IEEE Transactions on Biomedical Engineering,2010,57(5):1099-1107. [19] CARRY P Y,BACONNIER P,EBERHARD A,et al. Evaluation of Respiratory Inductive Plethysmography:Accuracy for Analysis of Respiratory Waveforms[J]. Chest,1997,111(4):910-915. [20] ZHANG Z,ZHENG J,WU H,et al. Development of a respiratory inductive plethysmography module supporting multiple sensors for wearable systems[J]. Sensors,2012,12(10):13167-13184. [21] LEINO K,NUNES S,VALTA P,et al. Validation of a new respiratory inductive plethysmograph[J]. Acta Anaesthesiologica Scandinavica,2001,45(1):104-111. [22] TORRES A,FIZ J A,GALDIZ B,et al. Assessment of respiratory muscle effort studying diaphragm movement registered with surface sensors. Animal model (dogs)[C]//The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE,2004,2:3917-3920. [23] MANONI A,LORETI F,RADICIONI V,et al. A new wearable system for home sleep apnea testing,screening,and classification[J]. Sensors,2020,20(24):7014. [24] HE C,TAN J,JIAN X,et al. A smart flexible vital signs and sleep monitoring belt based on MEMS triaxial accelerometer and pressure sensor[J]. IEEE Internet of Things Journal,2022,9(15):14126-14136. [25] HERNÁNDEZ BALADÉS J E. A system for the monitoring of sleep-related parameters based on inertial measurement units[D]. Columbia:University of British Columbia,2018. [26] BEN MANSOUR K,GUESNEAU M,BEN MANSOUR K. Monitoring of various breathing rate with an accelerometer[C/CD]//JETSAN 2021- Colloque en Télésanté et dispositifs biomédicaux - 8ème édition.Toulouse,Blagnac,France,Université Toulouse III - Paul Sabatier,2021. [27] FEKR A R,JANIDARMIAN M,RADECKA K,et al. A medical cloud-based platform for respiration rate measurement and hierarchical classification of breath disorders[J]. Sensors,2014,14(6):11204-11224. [28] SHABEEB A G,AL-ASKERY A J,HUMADI A F. Design and implementation of breathing rate measurement system based on accelerometer sensor[J]. IOP Conference Series:Materials Science and Engineering,2020,745(1):012100. [29] ROSHAN F A,RADECKA K,ZILIC Z. Tidal volume variability and respiration rate estimation using a wearable accelerometer sensor[C]//Proceedings of the 4th International Conference on Wireless Mobile Communication and Healthcare - “Transforming healthcare through innovations in mobile and wireless technologies”. Athens,Greece,ICST,2014. [30] HERNANDEZ J E,CRETU E. Respiratory effort monitoring system for sleep apnea screening for both supine and lateral recumbent positions[C]//20178th IEEE Annual Information Technology,Electronics and Mobile Communication Conference (IEMCON). Vancouver,BC:,IEEE,2017:191-197. [31] TANWEER M,HALONEN K A I. Development of wearable hardware platform to measure the ECG and EMG with IMU to detect motion artifacts[C]//2019 IEEE 22nd International Symposium on Design and Diagnostics of Electronic Circuits Systems (DDECS).2019:1-4. [32] REINVUO T,HANNULA M,SORVOJA H,et al. Measurement of respiratory rate with high-resolution accelerometer and emfit pressure sensor[C]//Proceedings of the 2006 IEEE Sensors Applications Symposium,2006. Houston,Texas,USA,IEEE,2006:192-195. [33] LAPI S,LAVORINI F,BORGIOLI G,et al. Respiratory rate assessments using a dual-accelerometer device[J]. Respiratory Physiology & Neurobiology,2014,191:60-66. [34] HUGHES S. Influences of sensor placement site and subject posture on measurement of respiratory frequency using triaxial accelerometers[J]. Frontiers in Physiology,2020,11:11. [35] GOLLEE H,CHEN W. Real-time detection of respiratory activity using an inertial measurement unit[C]//200729th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Lyon,France,IEEE,2007:2230-2233. [36] JAFARI T M,LEHTONEN E,TEUHO J,et al. A computational framework for data fusion in MEMS-based cardiac and respiratory gating[J]. Sensors,2019,19(19):4137. [37] SKORIC J,D’MELLO Y,ABOULEZZ E,et al. Relationship of the respiration waveform to a chest worn inertial sensor[C]//202042nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). Montreal,QC,Canada:,IEEE,2020:2732-2735. [38] PHAN D H,BONNET S,GUILLEMAUD R,et al. Estimation of respiratory waveform and heart rate using an accelerometer[C]//200830th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vancouver,BC,IEEE,2008:4916-4919. [39] HUNG P D,BONNET S,GUILLEMAUD R,et al. Estimation of respiratory waveform using an accelerometer[C]//20085th IEEE International Symposium on Biomedical Imaging:From Nano to Macro. Paris,France,IEEE,2008:1493-1496. [40] PHAN D H. Estimating confident index of respiratory signal using an accelerometer[C]//2017 IEEE 2nd International Conference on Signal and Image Processing (ICSIP). Singapore,IEEE,2017:413-417. [41] MORILLO D S,ROJAS OJEDA J L,CRESPO FOIX L F,et al. An accelerometer-based device for sleep apnea screening[J]. IEEE transactions on information technology in biomedicine,2010,14(2):491-499. [42] JARCHI D,RODGERS S J,TARASSENKO L,et al. Accelerometry-based estimation of respiratory rate for post-intensive care patient monitoring[J]. IEEE Sensors Journal,2018,18(12):4981-4989. [43] LEE J H,PARK H J,KIM Y N. Monitoring obstructive sleep apnea with electrocardiography and 3-axis acceleration sensor[C]//Proceedings of the 8th ACM International Conference on PErvasive Technologies Related to Assistive Environments. Corfu Greece:ACM,2015:1-6. [44] HAFEZI M,MONTAZERI N,ZHU K,et al. Sleep apnea severity estimation from respiratory related movements using deep learning[C]//201941st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Berlin,Germany:IEEE,2019:1601-1604. [45] BATES A,LING M J,MANN J,et al. Respiratory rate and flow waveform estimation from tri-axial accelerometer data[C]//2010 International Conference on Body Sensor Networks. Singapore,Singapore:IEEE,2010:144-150. [46] SCHIPPER F,VAN SLOUN R J G,GRASSI A,et al. Estimation of respiratory rate and effort from a chest-worn accelerometer using constrained and recursive principal component analysis[J]. Physiological Measurement,2021,42(4):045004. [47] ZHANG Z,YANG G Z. Monitoring cardio-respiratory and posture movements during sleep:What can be achieved by a single motion sensor[C]//2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN). Cambridge,MA,USA:,IEEE,2015:1-6. [48] DOHENY E P,LOWERY M M,RUSSELL A,et al. Estimation of respiration rate and sleeping position using a wearable accelerometer[C]//202042nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). Montreal,QC,Canada:,IEEE,2020:4668-4671. [49] LIU G Z,GUO Y W,ZHU Q S,et al. Estimation of respiration rate from three-dimensional acceleration data based on body sensor network[J]. Telemedicine and e-Health,2011,17(9):705-711. [50] PREEJITH S P,JEELANI A,MANIYAR P,et al. Accelerometer based system for continuous respiratory rate monitoring[C]//2017 IEEE International Symposium on Medical Measurements and Applications (MeMeA). Rochester,MN:,IEEE,2017:171-176. [51] QI W,ALIVERTI A. A multimodal wearable system for continuous and real-time breathing pattern monitoring during daily activity[J]. IEEE Journal of Biomedical and Health Informatics,2020,24(8):2199-2207. [52] ELFARAMAWY T,FALL C L,ARAB S,et al. A wireless respiratory monitoring system using a wearable patch sensor network[J]. IEEE Sensors Journal,2019,19(2):650-657. [53] ELFARAMAWY T,LATYR FALL C,MORISSETTE M,et al. Wireless respiratory monitoring and coughing detection using a wearable patch sensor network[C]//201715th IEEE International New Circuits and Systems Conference (NEWCAS). Strasbourg,France:IEEE,2017:197-200. [54] CHAN A M,FERDOSI N,NARASIMHAN R. Ambulatory respiratory rate detection using ECG and a triaxial accelerometer[C]//201335th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Osaka:IEEE,2013:4058-4061. [55] LEPINE N N,TAJIMA T,OGASAWARA T,et al. Robust respiration rate estimation using adaptive Kalman filtering with textile ECG sensor and accelerometer[C]//201638th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Orlando,FL,USA:,IEEE,2016:3797-3800. [56] RAIANO L,DI TOCCO J,MASSARONI C,et al. Clean-breathing:A novel sensor fusion algorithm based on ICA to remove motion artifacts from breathing signal[C]//2020 IEEE International Workshop on Metrology for Industry 4.0& IoT. IEEE,2020:734-739. [57] RUMINSKI J,BUJNOWSKI A,CZUSZYNSKI K,et al. Estimation of respiration rate using an accelerometer and thermal camera in eGlasses[C]//2016 Federated Conference on Computer Science and Information Systems (FedCSIS). 2016:1431-1434. [58] 杨海,罗涛,李莉,等. 基于惯性测量单元的运动员呼吸状态监测方法[J]. 中国惯性技术学报,2018,26(5):591-596. YANG Hai,LUO Tao,LI Li,et al. Athlete’s respiratory state monitoring method based on inertial measurement unit[J]. Journal of Chinese Inertial Technology,2018,26(5):591-596. [59] VERTENS J,FISCHER F,HEYDE C,et al. Measuring respiration and heart rate using two acceleration sensors on a fully embedded platform[C/CD]// icSPORTS. 2015:15-23. [60] KARACOCUK G,HOFLINGER F,ZHANG R,et al. Inertial sensor-based respiration analysis[J]. IEEE Transactions on Instrumentation and Measurement,2019,68(11):4268-4275. [61] GAIDHANI A,MOON K,OZTURK Y,et al. Extraction and analysis of respiratory motion using wearable inertial sensor system during trunk motion[J]. Sensors,2017,17(12):2932. [62] CESAREO A,GANDOLFI S,PINI I,et al. A novel,low cost,wearable contact-based device for breathing frequency monitoring[C]//201739th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Seogwipo,IEEE,2017:2402-2405. [63] CESAREO A,PREVITALI Y,BIFFI E,et al. Assessment of breathing parameters using an inertial measurement unit (IMU)-based system[J]. Sensors,2018,19(1):88. [64] CESAREO A,BIFFI E,CUESTA-FRAU D,et al. A novel acquisition platform for long-term breathing frequency monitoring based on inertial measurement units[J]. Medical & Biological Engineering & Computing,2020,58(4):785-804. [65] RODES C E,CHILLRUD S N,HASKELL W L,et al. Predicting adult pulmonary ventilation volume and wearing complianceby on-board accelerometry during personal level exposure assessments[J]. Atmospheric Environment,2012,57:126-137. [66] TELFER B A,WILLIAMSON J R,WEED L,et al. Estimating sedentary breathing rate from chest-worn accelerometry from free-living data[C]//202042nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE,2020:4636-4639. [67] RAHMAN M M,AHMED T,AHMED M Y,et al. Towards motion-aware passive resting respiratory rate monitoring using earbuds[C]//2021 IEEE 17th International Conference on Wearable and Implantable Body Sensor Networks (BSN). 2021:1-4. [68] DAN G,ZHAO J,CHEN Z,et al. A Novel signal acquisition system for wearable respiratory monitoring[J]. IEEE Access,2018,6:34365-34371. [69] WANG S,LIU M,PANG B,et al. A new physiological signal acquisition patch designed with advanced respiration monitoring algorithm based on 3-axis accelerator and gyroscope[C]//201840th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Honolulu,HI,IEEE,2018:441-444. [70] YOON J W,NOH Y S,KWON Y S,et al. Improvement of dynamic respiration monitoring through sensor fusion of accelerometer and gyro-sensor[J]. Journal of Electrical Engineering and Technology,2014,9(1):334-343. [71] ITOU S,INOUE S,WASHINO K. Respiration detection using inertial measurement unit[C]//2019 International Symposium on Electrical and Electronics Engineering (ISEE). 2019:119-123. [72] LIU G,WU D,MEI Z,et al. Automatic detection of respiratory rate from electrocardiogram,respiration induced plethysmography and 3D acceleration signals[J]. Journal of Central South University,2013,20(9):2423-2431. [73] ALAM R,PEDEN D B,LACH J C. Wearable respiration monitoring:Interpretable inference with context and sensor biomarkers[J]. IEEE Journal of Biomedical and Health Informatics,2021,25(6):1938-1948. [74] SHEN C L,HUANG T H,HSU P C,et al. Respiratory rate estimation by using ECG,impedance,and motion sensing in smart clothing[J]. Journal of Medical and Biological Engineering,2017,37(6):826-842. [75] DEHKORDI P,TAVAKOLIAN K,MARZENCKI M,et al. Assessment of respiratory flow and efforts using upper-body acceleration[J]. Medical & Biological Engineering & Computing,2014,52(8):653-661. [76] DI TOCCO J,RAIANO L,SABBADINI R,et al. A wearable system with embedded conductive textiles and an IMU for unobtrusive cardio-respiratory monitoring[J]. Sensors,2021,21(9):3018. [77] PARK S,SHIN H. Feasibility study for unconstrained respiration monitoring based on multi-way approach using an acceleration and force sensing module[J]. IEEE Sensors Journal,2017,17(11):3482-3489. [78] FERRER-LLUIS I,CASTILLO-ESCARIO Y,MONTSERRAT J M,et al. Analysis of smartphone triaxial accelerometry for monitoring sleep-disordered breathing and sleep position at home[J]. IEEE Access,2020,8:14. [79] HUANG C C,LIN W Y,LEE M Y. Development and verification of an accelerometer-based respiratory detection algorithm with wearable instrumented smart clothes[C]//2017 IEEE International Conference on Systems,Man,and Cybernetics (SMC). Banff,AB:,IEEE,2017:578-581. [80] LE-TIEN T,NGUYEN P,LUONG-HOAI T,et al. A combination solution for sleep apnea and heart rate detection based on accelerometer tracking[C]//DANG T K,KÜNG J,TAKIZAWA M,et al. Future Data and Security Engineering. Cham,Springer International Publishing,2019:85-103. [81] JIN A,YIN B,MORREN G,et al. Performance evaluation of a tri-axial accelerometry-based respiration monitoring for ambient assisted living[C]//2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Minneapolis,MN,IEEE,2009:5677-5680. [82] LEE J,YOO S K. Respiration rate estimation based on independent component analysis of accelerometer data:Pilot single-arm intervention study[J]. JMIR mHealth and uHealth,2020,8(8):e17803. [83] CHAN A M,SELVARAJ N,FERDOSI N,et al. Wireless patch sensor for remote monitoring of heart rate,respiration,activity,and falls[C]//201335th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE,2013:6115-6118. [84] OSIADALA N,KOLAKOWSKI M. The use of MEMS accelerometers for remote activity and living parameters monitoring[C]//2020 Baltic URSI Symposium (URSI). IEEE,2020:73-76. [85] PANDIA K,INAN O T,KOVACS G T A,et al. Extracting respiratory information from seismocardiogram signals acquired on the chest using a miniature accelerometer[J]. Physiological Measurement,2012,33(10):1643-1660. [86] KOZIA C,HERZALLAH R. Advanced fusion and empirical mode decomposition-based filtering methods for breathing rate estimation from seism cardiogram signals[J]. Information,Multidisciplinary Digital Publishing Institute,2021,12(9):368. [87] SCHNEIDER R,GEORGAKIS C. How to not make the extended Kalman filter fail[J]. Industrial & Engineering Chemistry Research,2013,52(9):3354-3362. [88] IWAO O,YORGOS J S. Dynamic prediction of traffic volume through Kalman filtering theory[J]. Transportation Research Part B:Methodological,1984,18(1):1-11. [89] SORENSON H W. Kalman filtering techniques[J]. Advances in Control Systems,1966,3:219-292. [90] HOSHIYA M,SAITO E. Structural identification by extended Kalman filter[J]. Journal of Engineering Mechanics,1984,110(12):1757-1770. [91] KRENER A J. The convergence of the extended Kalman filter [M]//RANTZER A,BYRNES C I. Directions in mathematical systems theory and optimization,Berlin:Springer Berlin Heidelberg,2003,286:173-182. [92] EVENSEN G. The ensemble Kalman filter:Theoretical formulation and practical implementation[J]. Ocean Dynamics,2003,53(4):343-367. [93] MAYBECK P S. The Kalman filter:An introduction to concepts [M]// COX I J,WILFONG G T. Autonomous robot vehicles,New York:Springer,1990:194-204. [94] EUSTON M,COOTE P,MAHONY R,et al. A complementary filter for attitude estimation of a fixed-wing UAV[C]//2008 IEEE/RSJ International Conference on Intelligent Robots and Systems. Nice,IEEE,2008:340-345. [95] BENZIANE L,EL HADRI A,SEBA A,et al. Attitude estimation and control using linearlike complementary filters:theory and experiment[J]. IEEE Transactions on Control Systems Technology,2016,24(6):2133-2140. [96] MADGWICK S O H. An efficient orientation filter for inertial and inertial/magnetic sensor arrays [R]. Bristol:x-io Technologies Limited,2010. [97] LUDWIG S A,BURNHAM K D. Comparison of euler estimate using extended Kalman filter,Madgwick and Mahony on quadcopter flight data[C]//2018 International Conference on Unmanned Aircraft Systems (ICUAS).IEEE,2018:1236-1241. [98] AL-FAHOUM A S,ABADIR M S. Design of a modified Madgwick filter for quaternion-based orientation estimation using AHRS[J]. Int. J. Comput. Electr. Eng.,2018,10(3):174-186. [99] MADGWICK S O,HARRISON A J,VAIDYANATHAN R. Estimation of IMU and MARG orientation using a gradient descent algorithm[C]//2011 IEEE International Conference on Rehabilitation Robotics,IEEE,2011:1-7. [100] RAHMAN M,MORSHED B I. Estimation of respiration rate using an inertial measurement unit placed on thorax-abdomen[C]//2021 IEEE International Conference on Electro Information Technology (EIT). Mt. Pleasant,MI,USA,IEEE,2021:1-5. [101] ALAMDARI N,TAVAKOLIAN K,ZAKERI V,et al. A morphological approach to detect respiratory phases of seismocardiogram[C]//201638th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Orlando,FL,USA,IEEE,2016:4272-4275. [102] MCCLURE K,ERDREICH B,BATES J H T,et al. Classification and detection of breathing patterns with wearable sensors and deep learning[J]. Sensors,2020,20(22):6481. [103] BAROUNI A,OTTENBACHER J,SCHNEIDER J,et al. Ambulatory sleep scoring using accelerometers- distinguishing between nonwear and sleep/wake states[J]. PeerJ,2020,8:e8284. [104] JACOBS F,SCHEERHOORN J,MESTROM E,et al. Reliability of heart rate and respiration rate measurements with a wireless accelerometer in postbariatric recovery[J]. Plos One,2021,16(4):e0247903. [105] ZSCHOCKE J,LEUBE J,GLOS M,et al. Reconstruction of pulse wave and respiration from wrist accelerometer during sleep[J]. IEEE Transactions on Biomedical Engineering,2022,69(2):830-839. [106] BRICOUT A,FONTECAVE-JALLON J,COLAS D,et al. Adaptive accelerometry derived respiration:Comparison with respiratory inductance plethysmography during sleep[C]//41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE,2019:6714-6717. [107] TRIMPOP J,SCHENK H,BIEBER G,et al. Smartwatch based respiratory rate and breathing pattern recognition in an end-consumer environment[C]//Proceedings of the 4th International Workshop on Sensor-based Activity Recognition and Interaction. Rostock Germany,ACM,2017:1-5. [108] KANO S,MEKARU H. Preliminary comparison of respiratory signals using acceleration on neck and humidity in exhaled air[J]. Microsystem Technologies,2021,27(1):1-9. [109] DRUMMOND G B,FISCHER D,LEES M,et al. Classifying signals from a wearable accelerometer device to measure respiratory rate[J]. ERJ Open Research,2021,7(2):00681-02020. [110] de LA F C,WEINSTEIN A,GUZMAN- VENEGAS R,et al. Use of accelerometers for automatic regional chest movement recognition during tidal breathing in healthy subjects[J]. Journal of Electromyography and Kinesiology,2019,47:105-112. [111] SIQUEIRA A,SPIRANDELI A F,MORAES R,et al. Respiratory waveform estimation from multiple accelerometers:An optimal sensor number and placement analysis[J]. IEEE Journal of Biomedical and Health Informatics,2019,23(4):1507-1515. [112] RENDON D B,OJEDA J L R,FOIX L F C,et al. Mapping the human body for vibrations using an accelerometer[C]//200729th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Lyon,France,IEEE,2007:1671-1674. [113] LEUBE J,ZSCHOCKE J,KLUGE M,et al. Reconstruction of the respiratory signal through ECG and wrist accelerometer data[J]. Scientific Reports,2020,10(1):14530. [114] LÁSZLÓ M C,ISTENES Z,TARCSI Á. Extracting physiological signals from smartphone sensors[C]// ICAI,2020:203-212. [115] FLORIS C,SOLBIATI S,LANDREANI F,et al. Feasibility of heart rate and respiratory rate estimation by inertial sensors embedded in a virtual reality headset[J]. Sensors,2020,20(24):7168. |
[1] | 彭坚, 王雪鹏, 季铁, 陈鋆纯. 智能头盔的多模态交互评价与优化设计[J]. 机械工程学报, 2023, 59(11): 117-128. |
[2] | 陈岚, 肖蕙蕙, 郭强, 向文凯. 三相Vienna整流器改进载波脉宽调制策略*[J]. 电气工程学报, 2021, 16(4): 143-150. |
[3] | 胡燃, 萧定辉, 卞佳音, 何泽斌, 陈建强, 林新生, 彭红刚. 基于模糊PID的液压杆塔调平控制方法研究*[J]. 电气工程学报, 2021, 16(4): 166-173. |
[4] | 董成林, 岳巍, 刘海涛, 黄田, 肖聚亮. TriMule与Tricept机器人刚度解析与比对[J]. 机械工程学报, 2021, 57(19): 30-38. |
[5] | 张建伟, 王佳宇. 三相直接矩阵变换器模糊滞环控制策略 *[J]. 电气工程学报, 2021, 16(1): 48-54. |
[6] | 史俊杰, 许昌, 雷娇, 李林敏, 薛飞飞, 韩星星. 典型山丘地形与风力机诱导涡流耦合演变规律[J]. 机械工程学报, 2020, 56(4): 85-94. |
[7] | 宋义彤, 舒红宇, 陈仙宝, 靖长青, 郭成. 分布式电动汽车状态与参数无迹卡尔曼滤波估计[J]. 机械工程学报, 2020, 56(16): 204-213. |
[8] | 李瑞君, 常振鑫, 雷英俊, 胡鹏浩, 范光照. 基于DVD光学读取头的悬臂式低频加速度计[J]. 机械工程学报, 2019, 55(2): 10-17. |
[9] | 丁宝洋, 白倩, 刘具龙, 张璧. 基于Simulink反馈方法的钛合金铣削刀具磨损预测[J]. 机械工程学报, 2019, 55(11): 224-232. |
[10] | 单亚运,庞科旺,刘旭宇. 基于模糊自适应分数阶PI λ的伺服控制策略研究[J]. 电气工程学报, 2018, 13(3): 27-33. |
[11] | 张文虎, 邓四二, 陈国定, 胡永乐. 圆柱滚子轴承半物理仿真试验技术研究[J]. 机械工程学报, 2018, 54(19): 78-87. |
[12] | 马爱华,李磊,师贺. 光伏电池建模及变步长MPPT控制[J]. 电气工程学报, 2017, 12(5): 58-63. |
[13] | 张施令. 基于粒子群算法的变压器油纸绝缘系统回复电压场路模拟研究[J]. 电气工程学报, 2017, 12(12): 1-10. |
[14] | 刘小院;白晓荣;贾建援;陈贵敏. 基于Ashby图的挠性加速度计材料选择[J]. , 2013, 49(21): 148-152. |
[15] | 王红军;陈佳鑫;邹湘军;陈冰冰;龙锦荣;陈晶;黄伟权. SimulationX及硬件在环仿真在伺服压力机设计和研究中的应用[J]. , 2012, 48(6): 51-56. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||