• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2024, Vol. 60 ›› Issue (2): 1-9.doi: 10.3901/JME.2024.02.001

• 仪器科学与技术 • 上一篇    下一篇

扫码分享

基于声发射信号稀疏表示的铝合金板材拉伸过程识别方法

焦敬品1, 孙延东1, 李光海2, 赵鹏经1, 吴斌1, 何存富1   

  1. 1. 北京工业大学材料与制造学部 北京 100124;
    2. 中国特种设备检测研究院 北京 100029
  • 收稿日期:2023-01-25 修回日期:2023-06-15 出版日期:2024-01-20 发布日期:2024-04-09
  • 通讯作者: 焦敬品(通信作者),女,1973年出生,博士,教授,博士研究生导师。主要研究方向为现代测控技术与方法、无损检测新技术、现代信号分析与处理技术、新型传感器技术。E-mail:jiaojp@bjut.edu.cn
  • 作者简介:孙延东,男,1994年出生。主要研究方向为声信号识别与分类方法。E-mail:sd_yandong@163.com
  • 基金资助:
    国家自然科学基金资助项目(11972053, 12274012)。

Sparse Representation of Acoustic Emission Signals for Identifying Tensile Process of Aluminum Alloy Sheets

JIAO Jingpin1, SUN Yandong1, LI Guanghai2, ZHAO Pengjing1, WU Bin1, HE Cunfu1   

  1. 1. Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124;
    2. China Special Equipment Inspection and Research Institute, Beijing 100029
  • Received:2023-01-25 Revised:2023-06-15 Online:2024-01-20 Published:2024-04-09

摘要: 针对钣金成形过程质量监测的需要,提出一种基于声发射信号稀疏表示的铝合金板材拉伸过程自动识别方法。该方法对钣金拉伸过程监测的声发射信号进行非负矩阵分解,提取其在低维子空间映射的特征系数,用于构造训练字典和测试样本,并利用l1范数进行稀疏分解和信号重构,进而实现对拉伸过程中弹性、塑性、屈服、强化和颈缩5个不同应力-应变状态的自动识别。同时,研究了声发射信号的数据类型对不同应力-应变状态识别准确率的影响。结果表明,提出的基于声发射信号稀疏表示方法可以很好实现铝合金拉伸过程中5个不同应力-应变状态的识别,相较于快速傅里叶变换类型数据,利用短时傅里叶变换数据的识别准确率更高。研究工作为钣金成型质量监控提供了可行的解决方案。

关键词: 拉伸过程, 稀疏表示, 声发射, 应力-应变状态, 非负矩阵分解

Abstract: Aiming at the need of quality monitoring in sheet metal forming process, an automatic identification method of aluminum alloy sheet drawing process based on sparse representation of acoustic emission signals was proposed. The method to monitor the process of sheet metal drawing of the acoustic emission signal is non-negative matrix factorization, and extract the mapping on the low-dimensional subspace characteristic coefficient of dictionary is used to construct the training and testing samples, and the use of l1 norm for sparse solution and the signal reconstruction, thus realize the tensile elasticity, plasticity, yield, hardening, and in the process of necking five different stress-strain state of automatic identification. At the same time, the influence of data types of acoustic emission signals on the recognition accuracy of different stress-strain states is studied. The results show that the proposed sparse representation method based on acoustic emission signals can well realize the identification of five different stress-strain states in the tensile process of aluminum alloy. Compared with Fast Fourier Transform data, the identification accuracy of Short-Time Fourier Transform data is higher. The research provides a feasible solution for the quality control of sheet metal forming.

Key words: tensile process, sparse representation, acoustic emission, stress-strain state, non-negative matrix factorization

中图分类号: