• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2020, Vol. 56 ›› Issue (2): 163-173.doi: 10.3901/JME.2020.02.163

• 运载工程 • 上一篇    下一篇

扫码分享

基于非结构化环境点云稀疏表示的无人驾驶汽车局部路径规划方法

刘梓林1, 黎予生2,3, 郑玲3,4   

  1. 1. 重庆大学机械工程学院 重庆 400044;
    2. 长安汽车股份有限公司汽车工程智能化研究院 重庆 401120;
    3. "国家2011计划"-重庆自主品牌汽车协同创新中心 重庆 400044;
    4. 重庆大学汽车工程学院 重庆 400044
  • 收稿日期:2019-02-15 修回日期:2019-10-21 出版日期:2020-01-20 发布日期:2020-03-11
  • 通讯作者: 黎予生(通信作者),男,1960年出生,博士,研究员,博士研究生导师。主要研究方向为主动安全、智能车辆平台技术、智能车辆网联技术。E-mail:liys@changan.com.cn
  • 作者简介:刘梓林,男,1988年出生,博士研究生。主要研究方向为智能汽车自主导航、高精度定位及环境重构。E-mail:zilinliu@foxmail.com;郑玲,女,1963年出生,博士,教授,重庆大学汽车系主任,博士研究生导师。主要研究方向为智能汽车的环境感知、决策与动力学控制。E-mail:zling@cqu.edu.cn
  • 基金资助:
    国家自然科学基金(51875061)和中国汽车产业创新发展联合基金重点(U1564208)资助项目。

Local Path Planning for Autonomous Vehicles Based on Sparse Representation of Point Cloud in Unstructured Environments

LIU Zilin1, LI Yusheng2,3, ZHENG Ling3,4   

  1. 1. College of Mechanical Engineering, ChongQing University, Chongqing 400044;
    2. Chongqing Changan Auto R&D Center, Changan Automobile Co., Ltd., Chongqing 401120;
    3. Chongqing Automotive Collaborative Innovation Center, Chongqing 400044;
    4. School of Automative Engineering, Chongqing University, Chongqing 400044
  • Received:2019-02-15 Revised:2019-10-21 Online:2020-01-20 Published:2020-03-11

摘要: 非结构化环境下,无人驾驶汽车的局部路径规划方法面临数据冗余及环境结构适用性问题。提出一种基于3维Lidar数据稀疏表示的局部路径规划建模方法——势场字典法(Potential field dictionary,PFD)。该方法以预置本地过完备DCT字典替代正交基,应用投影追踪方法(MP)结合环境采样预处理结果,对Lidar点云信息进行稀疏化分解;直接将稀疏分解矢量用于势场法局部路径规划,并提出"动态势场"以应对非结构化环境。实车试验表明:环境采样预处理结果储存空间小,且更能体现结构复杂程度;PFD算法以小稀疏度可以规划出完整连续可行路径,且性能优于RRT*算法以及传统势场算法。PFD算法在保证信息表达精度的前提下,减少了数据传输、储存成本,也可规划出适用于非结构化环境的局部路径。

关键词: 局部路径规划, 非结构化环境, 稀疏表示, 势场字典法*

Abstract: The local path planning methods for autonomous vehicles face the data redundancy and the applicability to the environmental structure in unstructured environments. A modeling method using the sparse representation of 3D Lidar data is presented, which is called potential field dictionary(PFD). The environmental sampling pretreatment results of Lidar signal are sparsely decomposed with Match Pursuit algorithm(MP), whose orthonormal basis is replaced by a preset over-complete DCT dictionary; the sparse decomposition vector is directly applied to the potential field method of the local path planning; dynamic potential field is used to deal with unstructured environments. The results of vehicle test show that the preprocessing result needs little storage space and can express the complexity of the environmental structure better. Afterwards, the PFD algorithm can plan full sequential feasible paths with small sparsity and its performance is superior to the traditional potential field method and RRT* method. The PFD algorithm can reduce the costs of data transmission and storage on the premise of the precision of surrounding information and plan feasible local paths in unstructured environments.

Key words: local path planning, unstructured environments, sparse representation, potential field dictionary

中图分类号: