• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2024, Vol. 60 ›› Issue (17): 283-296.doi: 10.3901/JME.2024.17.283

• 数字化设计与制造 • 上一篇    下一篇

扫码分享

高维数据自适应降维方法

段书用1, 杨建华1, 韩旭1, 刘桂荣2   

  1. 1. 河北工业大学机械工程学院 天津 300131;
    2. 辛辛那提大学航空工程和机械工程系 辛辛那提 45221 美国
  • 收稿日期:2023-06-29 修回日期:2024-05-15 出版日期:2024-09-05 发布日期:2024-10-21
  • 作者简介:段书用,女,1984年出生,博士,教授,博士研究生导师。主要研究方向为复杂装备可靠性、计算反求技术。E-mail:duanshuyong@hebut.edu.cn
    杨建华,男,1999年出生,硕士研究生。主要研究方向为计算反求技术。E-mail:yjianhua1999@126.com
    韩旭(通信作者),男,1968年出生,博士,教授,博士研究生导师。主要研究方向为复杂装备高性能设计、计算反求技术、优化理论与算法。E-mail:xhan@hebut.edu.cn
    刘桂荣,男,1958年出生,博士,教授,博士研究生导师。主要研究方向为计算反求技术、机器人智能感知、智能算法、优化理论与算法。E-mail:liugr@uc.edu
  • 基金资助:
    国家自然科学基金资助项目(52175222)。

Adaptive Dimensionality Reduction Method for High-dimensional Data

DUAN Shuyong1, YANG Jianhua1, HAN Xu1, LIU Guirong2   

  1. 1. School of Mechanical Engineering, Hebei University of Technology, Tianjin 300131;
    2. Aeronautical Engineering and Mechanical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
  • Received:2023-06-29 Revised:2024-05-15 Online:2024-09-05 Published:2024-10-21

摘要: 针对复杂装备及结构中高维信息导致的反求设计、优化设计、可靠性设计与分析时计算难度大、计算效率和精度低等问题,提出高维数据自适应降维方法—引导约束自编码降维方法。该方法基于主成分分析法能根据高维数据的相关性得到高质量的线性低维数据,与无监督训练的自编码器具有对降维数据质量自我重构的特点,提出正交引导和正交约束的双重策略,对自编码网络进行无监督训练,以达到高精度、高效率降维的目的。该方法主要有以下策略:首先利用主成分分析法快速得到由特征向量构造而成的具有正交特性的投影矩阵,然后将其用于预设自编码器中的可训练参数,以保证初始训练参数的正交性;其次在自编码器训练中继续施加权值正交约束即无相关性特征约束,以减少信息的冗余从而保证低维数据的独立性;同时,施加单位范数约束以避免梯度消失,最终得到具有高度正交特性的降维特征。为验证该方法的有效性,将该方法用于碳钎维和玻璃纤维混合铺层的复合材料层合板的材料参数反求,通过参数反求的精度来评估不同降维方法的性能。研究结果表明,该方法可高效的得到高质量的线性及非线性降维信息,有效克服了主成分分析法仅可实现高维信息的线性降维和标准自编码器降维数据精度低的缺点,并且显著提高了复合材料层合板的参数反求精度。

关键词: 神经网络, 降维方法, 主成分分析, 自动编码器, 特征提取和融合, 参数反求

Abstract: In dealing with problems of inverse design, optimal design, reliability design and analysis of complex structures, high dimensionality of the datasets can result in high computational difficulty, low computational efficiency and accuracy. Proposes an adaptive dimensionality reduction method for high-dimensional data——Guided Constraint Autoencoder. This method proposes a dual strategy of orthogonal bootstrapping and orthogonal constraint for unsupervised training of autoencoder networks based on the ability of principal component analysis to obtain high quality linear low-dimensional data based on the correlation of high-dimensional data and the unsupervised training of autoencoder with self-reconstruction of dimensionality reduction data quality to achieve high accuracy and high efficiency of dimensionality reduction. The method primarily employs the following techniques: PCA is used to quickly create a projection matrix with orthogonal properties from feature vectors, which is then used to preset the trainable parameters in the autoencoder to guarantee the orthogonality of the initial training parameters; The weight orthogonality constraint (uncorrelated feature constraint) is imposed in the next training to reduce the redundancy of information and ensure the independence of the low-dimensional data. At the same time, a unit-parameter constraint is imposed to avoid gradient disappearance. These strategies result in dimension reduced features with orthogonal properties. To verify the effectiveness of the GAE method, the method was applied to the material parameter inversion of carbon brazing and glass fibre composite laminates, and the performance of different dimensionality reduction methods was evaluated by the accuracy of the parameter inversion. The results show that the GAE method can efficiently obtain high-quality linear and non-linear dimensionality reduction information, effectively overcoming the shortcomings of the principal component analysis dimensionality reduction method which can only be used for linear reduction of high-dimensional information and the low accuracy of standard autoencode dimensionality reduction data, and significantly improving the parameter inverse accuracy of composite laminates.

Key words: neural networks, dimension-reduction, principal component analysis, autoencoder, feature extraction and fusion, parameter inverse

中图分类号: