[1] 鄢小安, 贾民平. 基于参数自适应特征模态分解的滚动轴承故障诊断方法[J]. 仪器仪表学报, 2022, 43(10):252-259. YAN Xiaoan, JIA Minping. A rolling bearing fault diagnosis method based on parameter-adaptive feature mode decomposition[J]. Chinese Journal of Scientific Instrument, 2022, 43(10):252-259. [2] 路小娟, 石成基.一种基于概率盒-HGWO优化SVM的滚动轴承故障诊断方法[J].振动与冲击, 2021, 40(22):234-241. LU Xiaojuan, SHI Chengji. Application of the p-box theory and HGWO-SVM in the fault diagnosis of rolling bearings[J]. Journal of Vibration and Shock, 2021, 40(22):234-241. [3] 刘文朋, 刘永强, 杨绍普, 等. 基于典型谱相关峭度图的滚动轴承故障诊断方法[J]. 振动与冲击, 2018, 37(8):87-92. LIU Wenpeng, LIU Yongqiang, YANG Shaopu, et al. Fault diagnosis of rolling bearing based on typical correlated kurtogram[J]. Journal of Vibration and Shock, 2018, 37(8):87-92. [4] 张守京, 慎明俊, 杨静雯, 等. 改进的共振稀疏分解方法及其在滚动轴承复合故障诊断中的应用[J]. 中国机械工程, 2022, 33(14):1697-1706. ZHANG Shoujing, SHEN Mingjun, YANG Jingwen, et al. Improved RSSD and its applications to composite fault diagnosis of rolling bearings[J]. China Mechanical Engineering, 2022, 33(14):1697-1706. [5] TONG Shuiguang, FU Zilong, TONG Zheming, et al. Fault diagnosis for gearboxes based on Fourier decomposition method and resonance demodulation[J]. Journal of Zhejiang University-Science A, 2023, 24(05):404-419. [6] ANTIONI J. The spectral kurtosis:A useful toolfor characterising non-stationary signals[J]. Mechanical Systemsand Signal Processing, 2006, 20:282-307. [7] ANTIONI J. Fast computation of the kurtogram for the detection of transient faults[J]. Mechanical Systems and Signal Processing, 2007, 21:108-124. [8] 李凤林. 基于改进快速峭度图的高速列车滚动轴承复合故障诊断[D]. 成都:西南交通大学, 2019. LI Fenglin. Compound-foult diagnosis of rolling bearings in a high-speed train based on improved fast kurtogram[D]. Chengdu:Southwest Jiaotong University, 2019. [9] XU Yonggang, ZHANG Kun, MA Chaoyong, et al. Adaptive kurtogram and its applications in rolling bearing fault diagnosis.[J]. Mechanical Systems and Signal Processing, 2016, 16. [10] MOSHREFZADEH A, FASANA A. The autogram:An effectiveapproach for selecting the optimal demodulation bandin rolling element bearings diagnosis[J]. Mechanical Systems and Signal Processing, 2018, 105:294-318. [11] ZHOU Qiuyang, YI Cai, RAN Le, et al. A blind deconvolution approach based on spectral harmonics-to-noise ratio for rotating machinery condition monitoring[J]. IEEE Transactions on Automation Science and Engineering, 2023, 20:1092-1107. [12] 徐艳, 陈冰冰, 马宏忠, 等. 基于EMD-PSD的OLTC振动信号特征提取方法[J]. 电力科学与技术学报, 2020, 35(5):3-10. XU Yan, CHEN Bingbing, MA Hongzhong, et al. Vibrayion singal feature extraction method of the on-loadtap changer based on EMD-PSD[J]. Journal of ElectricPower Science and Technology, 2020, 35(5):3-10. [13] PARHI K, MANOHAR A. Low-complexity welch power spectral density computation[J]. IEEE Transactionson Circuits and Systems I:Regular Papers, 2014, 61:172-182. [14] YI Cai, WANG Hao, ZHOU Qiuyang, et al. An adaptive harmonic product spectrum for rotating machinery fault diagnosis[J]. IEEE Transactions on Instrumentationand Measurement, 2023, 72:1-12. [15] 郑天, 李峰, 罗印升, 等. 基于高斯核函数的Hammerstein非线性系统辨识[J]. 控制工程, 2022, 29(11):2034-2041. ZHENG Tian, LI Feng, LUO Yinsheng, et al. Identification of hammerstein nonlinear system based on gaussian kernel functions[J]. Control Engineering of China, 2022, 29(11):2034-2041. [16] DU Ho, ROBERT B. Optimssation of bearing diagnostic techniques using simulated and actual bearing fault signals[J]. Mechanical Systems and Signal Processing, 2000, 14:763-788. [17] WANG Dong, ZHONG Jingjing, LI Chuan, et al. Box-cox sparse measures:A new family of sparse measures constructed from kurtosis and negative entropy[J]. Mechanical Systems and Signal Processing, 2021, 160. [18] XING Zhan, YI Cai, LIN Jianhui, et al. Multi-component fault diagnosis of wheelset-bearing using shift-invariant impulsive dictionary matching pursuit and sparrow search algorithm[J]. Measurement, 2021, 178:109375 |