[1] HUSSEIN M I, LEAMY M J, RUZZENE M. Dynamics of phononic materials and structures:Historical origins, recent progress, and future outlook[J]. Applied Mechanics Reviews, 2014, 66(4):040802. [2] 温激鸿, 王刚, 刘耀宗, 等. 周期弹簧振子结构振动带隙及隔振特性研究[J]. 机械工程学报, 2005, 41(2):205-209. WEN Jihong, WABG Gang, LIU Yaozong, et al. Study on vibration band gap and vibration isolation characteristics of periodic spring vibration structure[J]. Journal of Mechanical Engineering, 2005, 41(2):205-209. [3] 王倚天, 赵建雷, 胡更开, 等. 含机构位移模式的超材料低频宽带波动控制[J]. 科学通报, 2022, 67(12):1326-1336. WANG Yitian, ZHAO Jianlei, HU Gengkai, et al. Low frequency wideband wave control of metamaterials with mechanism displacement mode[J]. Chinese Science Bulletin, 2022, 67(12):1326-1336. [4] SIEVERS A J, TAKENO S. Intrinsic localized modes in anharmonic crystals[J]. Physical Review Letters, 1988, 61(8):970-973. [5] GANESH R, GONELLA S. From modal mixing to tunable functional switches in nonlinear phononic crystals[J]. Physical Review Letters, 2015, 114(5):054302. [6] 方鑫, 温激鸿. 非线性声学超材料中弹性波传播理论及其减振应用研究[J]. 机械工程学报, 2020, 56(5):79-87. FANG Xin, WEN Jihong. Elastic wave propagation theory and its application in nonlinear acoustic metamaterials[J]. Journal of Mechanical Engineering, 2020, 56(5):79-87. [7] YU Dianlong, WEN Jihong, ZHAO Honggang, et al. Vibration reduction by using the idea of phononic crystals in a pipe-conveying fluid[J]. Journal of Sound and Vibration, 2008, 318(1-2):193-205. [8] LU Yang, WANG Fengjiao, MA Xunjun. Helicopter interior noise reduction using compounded periodic struts[J]. Journal of Sound and Vibration, 2018, 435:264-280. [9] LIANG Bin, CHENG Jianchun, ZHU Yifan, et al. Spatial acoustic modulator for projecting high-quality holographic image[J]. The Journal of the Acoustical Society of America, 2016, 140(4):3049-3049. [10] MEAD D M. Wave propagation in continuous periodic structures:research contributions from Southampton, 1964-1995[J]. Journal of Sound and Vibration, 1996, 190(3):495-524. [11] WANG Kai, LIU Ying, YANG Qinshan. Tuning of band structures in porous phononic crystals by grading design of cells[J]. Ultrasonics, 2015, 61:25-32. [12] MANKTELOW K, LEAMY M J, RUZZENE M. Comparison of asymptotic and transfer matrix approaches for evaluating intensity-dependent dispersion in nonlinear photonic and phononic crystals[J]. Wave Motion, 2013, 50(3):494-508. [13] PACKO P, UHI T, STASZEWSKI W J, et al. Amplitude-dependent Lamb wave dispersion in nonlinear plates[J]. The Journal of the Acoustical Society of America, 2016, 140(2):1319-1331. [14] AUTRUSSON T B, SABRA K G, LEAMY M J. Reflection of compressional and Rayleigh waves on the edges of an elastic plate with quadratic nonlinearity[J]. The Journal of the Acoustical Society of America, 2012, 131(3):1928-1937. [15] WANG Jiao, ZHOU Weijian, HUANG Yang, et al. Controllable wave propagation in a weakly nonlinear monoatomic lattice chain with nonlocal interaction and active control[J]. Applied Mathematics and Mechanics, 2018, 39(8):1059-1070. [16] DUAN Wenshan, SHI Yuren, ZHANG Lei, et al. Coupled nonlinear waves in two-dimensional lattice[J]. Chaos, Solitons & Fractals, 2005, 23(3):957-962. [17] VAKAKIS A F, KING M E, PEARLSTEIN A J. Forced localization in a periodic chain of non-linear oscillators[J]. International Journal of Non-linear Mechanics, 1994, 29(3):429-447. [18] VAKAKIS A F, KING M E. Nonlinear wave transmission in a monocoupled elastic periodic system[J]. The Journal of the Acoustical Society of America, 1995, 98(3):1534-1546. [19] SREELATHA K S, JOSEPH K B. Wave propagation through a 2D lattice[J]. Chaos, Solitons & Fractals, 2000, 11(5):711-719. [20] NARISETTI R K, LEAMY M J, RUZZENE M. A perturbation approach for predicting wave propagation in one-dimensional nonlinear periodic structures[J]. Journal of Vibration and Acoustics, 2010, 132(3):031001. [21] NARISETTI R K, RUZZENE M, LEAMY M J. A perturbation approach for analyzing dispersion and group velocities in two-dimensional nonlinear periodic lattices[J]. Journal of Vibration and Acoustics, 2011, 133(6):061020. [22] NARISETTI R K, RUZZENE M, LEAMY M J. Study of wave propagation in strongly nonlinear periodic lattices using a harmonic balance approach[J]. Wave Motion, 2012, 49(2):394-410. [23] LI Liejuan, LI Xiaolin, ZHOU Zhikun, et al. Simulation on propagation characteristics of solitary waves in a one-dimensional charged granular chain[J]. Granular Matter, 2019, 21:1-8. [24] LENG Dingxin, LIU Guijie, SUN Lingyu, et al. Wave propagation characteristics of a magnetic granular chain[J]. Journal of Sound and Vibration, 2017, 406:89-103. [25] WANG Xufeng, ZHU Weidong. A modified incremental harmonic balance method based on the fast Fourier transform and Broyden's method[J]. Nonlinear Dynamics, 2015, 81(1):981-989. [26] MANKTELOW K, NARISETTI R K, LEAMY M J, et al. Finite-element based perturbation analysis of wave propagation in nonlinear periodic structures[J]. Mechanical Systems and Signal Processing, 2013, 39(1-2):32-46. [27] LI Yifeng, LAN Jun, LI Baoshun, et al. Nonlinear effects in an acoustic metamaterial with simultaneous negative modulus and density[J]. Journal of Applied Physics, 2016, 120(14):145105. [28] BANERJEE A, CALIUS E P, DAS R. Impact based wideband nonlinear resonating metamaterial chain[J]. International Journal of Non-Linear Mechanics, 2018, 103:138-144. [29] JIAO Weijian, GONELLA S. Mechanics of inter-modal tunneling in nonlinear waveguides[J]. Journal of the Mechanics and Physics of Solids, 2018, 111:1-17. [30] ZAERA R, VILA J, FERNANDEZ-SAEZ J, et al. Propagation of solitons in a two-dimensional nonlinear square lattice[J]. International Journal of Non-Linear Mechanics, 2018, 106:188-204. [31] DENG Bolei, WANG Pai, HE Qi, et al. Metamaterials with amplitude gaps for elastic solitons[J]. Nature Communications, 2018, 9(1):1-8. [32] LAU S L, CHEUNG Y K. Amplitude incremental variational principle for nonlinear vibration of elastic systems[J]. Journal of Applied Mechanics, 1981, 48:959-964. [33] LAU S L, CHEUNG Y K, WU S Y. Incremental harmonic balance method with multiple time scales for aperiodic vibration of nonlinear systems[J]. Journal of Applied Mechanics, 1983, 50(4a):871-876. [34] SZEMPLINSKA-STUPNICKA W. The generalized harmonic balance method for determining the combination resonance in the parametric dynamic systems[J]. Journal of Sound and Vibration, 1978, 58(3):347-361. [35] CHEUNG Y K, CHEN S H, LAU S L. Application of the incremental harmonic balance method to cubic non-linearity systems[J]. Journal of Sound and Vibration, 1990, 140(2):273-286. [36] LEUNG A Y T, CHUI S K. Non-linear vibration of coupled duffing oscillators by an improved incremental harmonic balance method[J]. Journal of Sound and Vibration, 1995, 181(4):619-633. [37] LAZAROV B S, JENSEN J S. Low-frequency band gaps in chains with attached non-linear oscillators[J]. International Journal of Non-Linear Mechanics, 2007, 42(10):1186-1193. [38] WEI Linshuai, WANG Yize, WANG Yuesheng. Nonreciprocal transmission of nonlinear elastic wave metamaterials by incremental harmonic balance method[J]. International Journal of Mechanical Sciences, 2020, 173:105433. [39] WANG Xuefeng, ZHU Weidong, LIU Mao. Steady-state periodic solutions of the nonlinear wave propagation problem of a one-dimensional lattice using a new methodology with an incremental harmonic balance method that handles time delays[J]. Nonlinear Dynamics, 2020, 100(2):1457-1467. [40] WANG Xuefeng, ZHU Weidong, ZHAO Xi. An incremental harmonic balance method with a general formula of Jacobian matrix and a direct construction method in stability analysis of periodic responses of general nonlinear delay differential equations[J]. Journal of Applied Mechanics, 2019, 86(6):061011. [41] SONG Mitao, ZHU Weidong. Elastic wave propagation in strongly nonlinear lattices and its active control[J]. Journal of Applied Mechanics, 2021, 88(7):071003. [42] FRANDSEN N M M, JENSEN J S. Modal interaction and higher harmonic generation in a weakly nonlinear, periodic mass-spring chain[J]. Wave Motion, 2017, 68:149-161. [43] ZHAO Jian, WANG Hongyu, WANG Xuefeng, et al. Active regulation of elastic waves in a type of two-dimensional periodic structures with piezoelectric springs[J]. Journal of Vibration and Acoustics, 2024, 146(1):011001 |