[1] 宫岛,刘广宇,周劲松,等. 动车组车体异常振动问题分析及治理研究[J]. 机械工程学报,2021,57(10):95-105,117. GONG Dao,LIU Guangyu,ZHOU Jinsong,et al. Research on abnormal vibration issue of car bodies of EMU trains and its treatment[J]. Journal of Mechanical Engineering,2021,57(10):95-105,117. [2] 李凡松,王建斌,石怀龙,等. 动车组车体异常弹性振动原因及抑制措施研究[J]. 机械工程学报,2019,55(12):178-188. LI Fansong,WANG Jianbin,SHI Huailong,et al. Research on causes and countermeasures of abnormal flexible vibration of car body for electric multiple units[J]. Journal of Mechanical Engineering,2019,55(12):178-188. [3] 尤泰文,周劲松,宫岛,等. 高速动车组地板局部振动控制研究[J]. 机械工程学报,2021,57(4):140-147. YOU Taiwen,ZHOU Jinsong,GONG Dao,et al. Research on local vibration control of high-speed EMU floor[J]. Journal of Mechanical Engineering,2021,57(4):140-147. [4] 石怀龙,王建斌,戴焕云,等. 联轴器不对中导致的车体振动研究[J]. 振动、测试与诊断,2015,35(4):626-631,793. SHI Huailong,WANG Jianbin,DAI Huanyun,et al. Car body vibration analysis subject to coupling misalignment in traction system of metro vehicle[J]. Journal of Vibration,Measurement & Diagnosis,2015,35(4):626-631,793. [5] 彭来先,韩健,初东博,等. 高速动车组垂向止挡异常振动特性及成因分析[J]. 机械工程学报,2019,55(12):121-127. PENG Laixian,HAN Jian,CHU Dongbo,et al. Analysis of abnormal vibration characteristics and causes of vertical block in high-speed EMU[J]. Journal of Mechanical Engineering,2019,55(12):121-127. [6] 汪群生,曾京,魏来,等. 车下悬吊设备不均衡振动对车体振动的影响[J]. 铁道学报,2017,39(2):24-31. WANG Qunsheng,ZENG Jing,WEI Lai,et al. Influence of unbalanced vibration of underneath suspended system on carbody vibration[J]. Journal of the China Railway Society,2017,39(2):24-31. [7] WANG Qunsheng,ZENG Jing,WEI Lai,et al. Reduction of vertical abnormal vibration in car bodies of low-floor railway trains by using a dynamic vibration absorber[J]. Proceedings of the Institution of Mechanical Engineers,Part F:Journal of Rail and Rapid Transit,2018,232(5):1437-1447. [8] 周亚波,池茂儒,蔡吴斌,等. 铁道车辆异常振动噪声的原因分析[J]. 机械工程学报,2021,57(4):148-155. ZHOU Yabo,CHI Maoru,CAI Wubin,et al. Causes analysis of abnormal vibration and noise in railway vehicles[J]. Journal of Mechanical Engineering,2021,57(4):148-155. [9] 韩光旭,张捷,肖新标,等. 高速动车组车内异常振动噪声特性与车轮非圆化关系研究[J]. 机械工程学报,2014,50(22):113-121. HAN Guangxu,ZHANG Jie,XIAO Xinbiao,et al. Study on high-speed train abnormal interior vibration and noise related to wheel roughness[J]. Journal of Mechanical Engineering,2014,50(22):113-121. [10] 谢晨希,陶功权,温泽峰. 地铁车辆制动管路动应力分析及结构优化[J]. 机械工程学报,2021,57(10):118-125. XIE Chenxi,TAO Gongquan,WEN Zefeng. Dynamic stress analysis and structural optimization of braking pipeline of metro vehicle[J]. Journal of Mechanical Engineering,2021,57(10):118-125. [11] ZHOU Cheng,CHI Maoru,WEN Zefeng,et al. An investigation of abnormal vibration-induced coil spring failure in metro vehicles[J]. Engineering Failure Analysis,2020,108:104238. [12] QU Sheng,WANG Jianbin,ZHANG Dafu,et al. Failure analysis on bogie frame with fatigue cracks caused by hunting instability[J]. Engineering Failure Analysis,20201,128:105584. [13] LI Fansong,WU Pingbo,JING Zeng,et al. Vibration fatigue dynamic stress simulation under multi-load input condition:Application to metro lifeguard[J]. Engineering Failure Analysis,2019,99:141-152. [14] 梁建英,丁叁叁,田爱琴,等. 新一代高速动车组车体设计创新技术[J]. 中国工程科学,2015,17(4):63-68. LIANG Jianying,DING Sansan,TIAN Aiqin,et al. Innovative design technology for the new generation of high-speed EMU[J]. Strategic Study of Chinese Academy of Engineering,2015,17(4):63-68. [15] 曾要争. 车下设备激励对车体模态匹配的影响[J]. 机车电传动,2019(1):109-113. ZENG Yaozheng. Influence of excitation from suspended equipment on the modal matching of car body[J]. Automobile Applied Technology,2019(1):109-113. [16] 石怀龙,罗仁,邬平波,等. 基于动力吸振原理的动车组车下设备悬挂参数设计[J]. 机械工程学报,2014,50(14):155-161. SHI Huailong,LUO Ren,WU Pingbo,et al. Suspension parameters designing of equipment for electric multiple units based on dynamic vibration absorber theory[J]. Journal of Mechanical Engineering,2014,50(14):155-161. [17] SHI Huailong,LUO Ren,WU Pingbo,et al. Application of DVA theory in vibration reduction of carbody with suspended equipment for high-speed EMU[J]. Science China Technological Sciences,2014,57(7):1425-1438. [18] 吴会超,邬平波,曾京,等. 车下设备对车体振动的影响[J]. 交通运输工程学报,2012,12(5):50-56. WU Huichao,WU Pingbo,ZENG Jing,et al. Influence of equipment under car on carbody vibration[J]. Journal of Traffic and Transportation Engineering 2012,12(5):50-56. [19] 罗光兵,曾京,罗仁. 车下设备悬吊方式对车体振动的影响[J]. 铁道学报,2015,37(5):9-14. LUO Guangbing, ZENG Jing, LUO Ren. The influence of underframe equipment suspended types on carbody vibrations[J]. Journal of the China Railway Society,2015,37(5):9-14. [20] 宫岛,周劲松,孙文静,等. 高速列车车下设备模态匹配研究[J]. 振动与冲击,2014,33(8):180-185. GONG Dao,ZHOU Jinsong,SUN Wenjing,et al. Modes matching between suspended devices and car body for a high-speed railway vehicle[J]. Journal of Vibration and Shock,2014,33(8):180-185. [21] 宫岛,周劲松,孙文静,等. 高速列车车下设备模态匹配及试验研究[J]. 铁道学报,2014,36(10):13-20. GONG Dao,ZHOU Jinsong,SUN Wenjing,et al. Modal matching between equipment and car body of a high-speed railway vehicle and in-situ experiment[J]. Journal of the China Railway Society,2014,36(10):13-20. [22] 王思明,张立民. 某型地铁车辆设备吊挂刚度与车体模态匹配研究[J]. 铁道机车车辆,2020,40(4):116-118,130. WANG Siming,ZHANG Limin. Research on matching of suspension stiffness with elastic carbody of a metro vehicle[J]. Railway Locomotive & Car,2020,40(4):116-118,130. [23] 王成强,于庆斌,许鹏. 基于振动特性分析的车辆模态设计原则[J]. 装备制造技术,2015(1):65-68,90. WANG Chengqiang,YU Qingbin,XU Peng. Vehicle modal design principle based on the analysis of vibration characteristics[J]. Equipment Manufacturing Technology,2015(1):65-68,90. [24] 马敏纳,周劲松,赵阳阳. 基于系统模态匹配策略的地铁车辆车体减振设计[J]. 城市轨道交通研究,2015,18(1):96-100. MA Minna,ZHOU Jinsong,ZHAO Yangyang. Anti-vibration design of metro vehicle carbody based on system mode matching[J]. Urban Mass Transit,2015,18(1):96-100. [25] 汤劲松,王云鹏,徐聪. 铁道客车关键系统的模态规划研究[J]. 铁道机车车辆,2020,40(4):57-63. TANG Jinsong,WANG Yunpeng,XU Cong. Study on modal programming of key system of railway passenger cars[J]. Railway Locomotive & Car,2020,40(4):57-63. [26] 李国栋,曾京,池茂儒,等. 高速列车轮轨匹配关系改进研究[J]. 机械工程学报,2018,54(4):93-100. LI Guodong,ZENG Jing,CHI Maoru,et al. Study on the improvement of wheel-rail matching relationship for high speed train[J]. Journal of Mechanical Engineering,2018,54(4):93-100. [27] 任尊松,刘志明. 高速动车组振动传递及频率分布规律[J]. 机械工程学报,2013,49(16):1-7. REN Zunsong,LIU Zhiming. Vibration and frequency domain characteristics of high speed EMU[J]. Journal of Mechanical Engineering,2013,49(16):1-7. [28] 徐宁,李强,任尊松,等. 考虑一系悬挂局部细化的车辆垂向系统振动传递特性研究[J]. 机械工程学报,2021,57(10):106-117. XU Ning,LI Qiang,REN Zunsong,et al. Study on the vibration transfer characteristics of vertical vehicle system considering local refinement of primary suspension[J]. Journal of Mechanical Engineering,2021,57(10):106-117. [29] 谢素明,薛宁鑫,马梦琳. 高速动车组车体模态分析建模方法及试验验证[J]. 大连交通大学学报,2016,37(1):11-14. XIE Suming,XUE Ningxin,MA Menglin. Modeling method of high-speed EMU car body modal analysis and experimental verification[J]. Journal of Dalian Jiaotong University,2016,37(1):11-14. [30] 张军,张晓林,方吉. 动车组车体模态灵敏度及优化设计研究[J]. 机械工程学报,2018,54(12):93-101. ZHANG Jun,ZHANG Xiaolin,FANG Ji. Research on modal sensitivity and optimization design for car body of the EMU[J]. Journal of Mechanical Engineering,2018,54(12):93-101. [31] 杨晟,李凡松,石怀龙,等. 车体垂弯振型节点位置对其弹性振动的影响[J]. 机械工程学报,2020,56(22):210-218. YANG Sheng,LI Fansong,SHI Huailong,et al. Effect of modal node position of vertical bending of car body on its vibration[J]. Journal of Mechanical Engineering,2020,56(22):210-218. [32] 朱丽莎,张义民,王长一. 共振失效下复杂转子系统的可靠性稳健优化设计[J]. 东北大学学报(自然科学版),2014,35(11):1592-1596. ZHU Lisha,ZHANG Yimin,WANG Changyi. Reliability robust optimization design for complex rotor system under resonance failure[J]. Journal of Northeastern University (Natural Science),2014,35(11):1592-1596. [33] 王鹏辉,李哲,童军,等. 基于频率管理的装备振动环境适应性提升[J]. 装备环境工程,2021,18(9):7-13. WANG Penghui,LI Zhe,TONG Jun,et al. Improvement of equipment vibration environment adaptability based on frequency management[J]. Equipment Environment Engineering,2021,18(9):7-13. [34] American Petroleum Institute. Axial and centrifugal compressors and expander-compressors:API 617[S]. Washington DC:American Petroleum Institute,2014. [35] American Petroleum Institute. API standard paragraphs rotordynamic tutorial:Lateral critical speeds,unbalance response,stability,train torsionals,and rotor balancing:API 684-1[S]. Washington DC:American Petroleum Institute,2019. [36] LUNDHOLM S,LARSSON M,LINDBLAD M. Rotodynamic study of pumps in the nuclear industry[EB/OL].[2023-11-06]. https://energiforsk.se/en/reports. [37] 庞剑. 汽车车身噪声与振动控制[M]. 北京:机械工业出版社,2015. PANG Jian. NVH control of automotive body[M]. Beijing:China Machine Press,2015. [38] 陈剑,穆国宝,张丰利. 汽车NVH正向设计中的系统模态匹配策略研究[J]. 汽车工程,2010,32(5):369-372,393. CHEN Jian,MU Guobao,ZHANG Fengli. A study on the strategy for modal matching between systems in vehicle NVH top-down design[J]. Automotive Engineering,2010,32(5):369-372,393. [39] 陈无畏,邓书朝,黄鹤,等. 基于模态匹配的车架动态特性优化[J]. 汽车工程,2016,38(12):1488-1493. CHEN Wuwei,DENG Shuchao,HUANG He,et al. Dynamic characteristics optimization of frame for modal matching[J]. Automotive Engineering,2016,38(12):1488-1493. [40] 高普,刘辉,项昌乐,等. 面向实车动力传动系统的隔振与吸振综合减振技术研究[J]. 机械工程学报,2021,57(14):244-252. GAO Pu,LIU Hui,XIANG Changle,et al. Study on torsional isolator and absorber comprehensive vibration reduction technology for vehicle powertrain[J]. Journal of Mechanical Engineering,2021,57(14):244-252. [41] 张丰利. 基于汽车NVH正向设计流程的整车模态匹配研究[D]. 合肥:合肥工业大学,2009. ZHANG Fengli. Research on vehicle modal frequencies matching based on original NVH design process[D]. Hefei:Hefei University of Technology,2009. [42] 中国船级社. GDO26-2000船上振动控制指南[M]. 北京:人民交通出版社,2000. China Classification Society. GDO26-2000 Guidelines for shipboard vibration control[M]. Beijing:People's Communications Press,2000. [43] 中国船级社. GD15-2021船上振动控制指南[M]. 北京:中国船级社,2021. China Classification Society. GD15-2021 Guidelines for shipboard vibration control[M]. Beijing:China Classification Society,2021. [44] 中国人民解放军海军装备技术部. 舰船环境条件要求机械环境:GJB 1060.1-1991[S]. 北京:国防科学技术工业委员会,1991. Navy Equipment Technology Department of the Chinese People's Liberation Army. General requirement for environmental conditions of naval ships mechanical environments:GJB 1060.1-1991[S]. Beijing:Commission of Science technology and Industry of National Defense,1991. [45] National Aeronautics and Space Administration. Loads and structural dynamics requirements for spaceflight hardware:NASA-JSC-65829[S]. Houston:Lyndon B. Johnson Space Center,2011. [46] European Space Agency. Space engineering spacecraft mechanical loads analysis handbook:ECSS-E-HB-32-26A[S]. Noordwijk:ESA Requirements and Standards Division,2013. [47] 王帅,王丽霞,梁吉鹏,等. 航天结构振动频率管理方法研究[J]. 强度与环境,2020,47(1):8-16. WANG Shuai,WANG Lixia,LIANG Jipeng,et al. Vibration frequency management research for aerospace structures[J]. Structure & Environment Engineering,2020,47(1):8-16. [48] International Union of Railway. Loadings of coach bodies and their components:UIC 566-1990[S]. Pairs:International Union of Railway,1990. [49] Technical Committee CEN/TC 256"Railway applications". Railway applications-Structural requirements of railway vehicle bodies-Part 1:Locomotives and passenger rolling stock (and alternative method for freight wagons):EN 12663-1-2010[S]. Brussels:European Committee for Standardization,2010. [50] Russian Railway Transportation Standardization Technical Committee. GOST 55495-2013 railway multiple units durability and dynamics requirements[S]. Moscow:Russian Federal Bureau of Technical Regulations and Metrology,2013. [51] 铁道部科学技术司. 德国联邦铁路城间特快列车ICE技术任务书[M]. 成都:西南交通大学出版社,1993. Department of Science and Technology of Ministry of Railways of China. ICE technical assignment of German federal railway intercity express train[M]. Chengdu:Press of Southwest Jiaotong University,1993. [52] 郝鲁波. 客车模态计算与试验研究[D]. 大连:大连理工大学,2005. HAO Lubo. Modal analysis and testing research of passenger car bodies[D]. Dalian:Dalian University of Technology,2005. [53] 国家铁路局. 铁道客车及动车组模态试验方法及评定:TB/T 3502-2018[S]. 北京:国家铁路局,2018. National Railway Administration of the People's Republic of China. Modal test methods and evaluation for railway passenger car and EMU/DMU:TB/T 3502-2018[S]. Beijing:National Railway Administration of the People's Republic of China,2018. [54] FRANKOVICH D. The basics of vibration isolation using elastomeric materials[M]. Indianapolis:E-A-R Specialty Composites,2000. [55] YAM L,LEUNG T,LI D,et al. Theoretical and experimental study of modal strain analysis[J]. Journal of Sound and Vibration,1996,191(2):251-260. [56] LI Fansong,WU Hao,WU Pingbo. Vibration fatigue dynamic stress simulation under non-stationary state[J]. Mechanical Systems and Signal Processing,2021,146,107006. [57] 高淑英,沈火明. 振动力学[M]. 北京:中国铁道出版社,2011. GAO Shuying,SHEN Huoming. Vibration mechanics[M]. Beijing:China Railway Publishing House,2011. [58] LING Liang,ZHANG Qing,XIAO Xinbiao,et al. Integration of car-body flexibility into train-track coupling system dynamics analysis[J]. Vehicle System Dynamics,2018,56(4):485-505. [59] AHMADI A,FARRAHI G H,KASHYZADEH K R,et al. A comparative study on the fatigue life of the vehicle body spot welds using different numerical techniques:Inertia relief and modal dynamic analyses[J]. Frattura ed Integrità Strutturale,2020,14(52):67-81. [60] 国家市场监督管理总局,国家标准化管理委员会. 机车车辆动力学性能评定及试验鉴定规范:GB/T 5599-2019[S]. 北京:中国标准出版社,2019. State Administration of Market Supervision,Standardization Administration of the People's Republic of China. Specification for dynamic performance assessment and testing verification of rolling stock:GB/T 5599-2019[S]. Beijing:Standards Press of China,2019. |