• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2024, Vol. 60 ›› Issue (15): 18-27.doi: 10.3901/JME.2024.15.018

• 机器人及机构学 • 上一篇    下一篇

扫码分享

牵拉人工肌腱式双足机器人矢状面行走控制

高海波1, 王圣军1, 单开正1, 韩亮亮2, 于海涛1,2   

  1. 1. 哈尔滨工业大学机器人技术与系统国家重点实验室 哈尔滨 150080;
    2. 中国航天科技集团有限公司空间结构与机构技术实验室 上海 201108
  • 收稿日期:2023-08-23 修回日期:2024-01-04 出版日期:2024-08-05 发布日期:2024-09-24
  • 作者简介:高海波,男,1970年出生,博士,教授,博士研究生导师,主要研究方向为宇航空间机构、特种移动机器人。E-mail:gaohaibo@hit.edu.cn
    王圣军,男,1992年出生,博士研究生。主要研究方向为足式机器人运动规划与智能控制。E-mail:15B908058@hit.edu.cn
    于海涛(通信作者),男,1984年出生,博士,研究员,博士研究生导师。主要研究方向为仿生移动机理、足式机器人系统设计与运动控制。E-mail:yht@hit.edu.cn
  • 基金资助:
    国家自然科学基金(52175011)、中国航天科技集团有限公司空间结构与机构技术实验室开放课题基金(YY-F805202210023)和群体协同与自主实验室开放基金课题(QXZ23013201)资助项目。

Sagittal Walking Control of Biped Robot Equipped with Artificial Tendon

GAO Haibo1, WANG Shengjun1, SHAN Kaizheng1, HAN Liangliang2, YU Haitao1,2   

  1. 1. State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150080;
    2. Space Structure and Mechanism Technology Laboratory, China Aerospace Science and Technology Group Co. Ltd., Shanghai 201108
  • Received:2023-08-23 Revised:2024-01-04 Online:2024-08-05 Published:2024-09-24

摘要: 针对传统双足机器人刚性支腿结构缺乏弹性元素的局限,提出一种借鉴人体腿-足肌腱功能的人工肌腱牵拉式支腿结构,并搭建了基于五杆拓扑构型的四自由度双足机器人原理样机。建立了基于线性倒立摆(Linear inverted pendulum,LIP)模型的双足机器人行走规划优化范式。提出了基于LIP模型的双足机器人动步态控制器。在摆动相阶段,采用基于贝塞尔曲线的足端轨迹规划及融合模型前馈的PD控制策略。在支撑相阶段,采用足端地面支反力前馈结合机身姿态、高度反馈的控制策略。搭建试验平台对机器人运控算法进行了有效性验证。试验结果表明,双足机器人可实现0.8 m/s (约两倍腿长/s)的稳定行走速度,机身俯仰角度波动可控制在±7°以内,机身高度波动可控制在±4 cm以内。上述研究成果可进一步推广至面向三维空间移动作业的人形机器人系统设计。

关键词: 双足机器人, 人工肌腱, 动步态, 行走控制

Abstract: To overcome the shortage of elastic elements in rigid leg in traditional bipedal robots, a novel leg scheme with artificial tendon inspired from tendon-muscle complex in human’s leg and foot. A 4-DoF biped prototype with five-linkage configuration is also developed. The optimization paradigm of bipedal walking is constructed based on the linear inverted pendulum (LIP). The dynamical walking controller is devised based on the LIP model embodying the swing and the stance part. In swing, a PD control strategy is employed by combining the Bezier spline-based foot trajectory planning and model-based feedforward compensation. In stance, a control strategy with the feedforward of ground reaction force is proposed by integrating the feedback control of body pitch and height. The effectiveness of the proposed algorithm is experimentally validated. Experimental results demonstrate that the bipedal robot achieves stable walking at 0.8 m/s (almost 2 times of leg length per second), and the fluctuations of the body pitch and height are restrained within ±7° and ±4 cm, respectively. The aforementioned contributions can be further extended to the systematic design of humanoids executing mobile manipulation in 3D world.

Key words: biped robot, artificial tendon, dynamical gait, locomotion control

中图分类号: