机械工程学报 ›› 2024, Vol. 60 ›› Issue (11): 115-134.doi: 10.3901/JME.2024.11.115
• 特邀专栏:复杂装备智能设计理论与方法 • 上一篇 下一篇
姚玉峰1,2, 裴硕1, 郭军龙1, 王佳佳1
收稿日期:
2023-06-17
修回日期:
2024-01-09
出版日期:
2024-06-05
发布日期:
2024-08-02
作者简介:
姚玉峰,男,1978年出生,博士,教授,博士研究生导师。主要研究方向为数字化医疗装备及康复机器人。E-mail:yufeng.yao@hit.edu.cn基金资助:
YAO Yufeng1,2, PEI Shuo1, GUO Junlong1, WANG Jiajia1
Received:
2023-06-17
Revised:
2024-01-09
Online:
2024-06-05
Published:
2024-08-02
摘要: 目前脑卒中患者的运动康复主要由康复医师辅助完成,但我国的康复医疗资源并不充裕,无法满足当下迫切的卒中及偏瘫康复需求。机器人辅助康复治疗是一项帮助脑卒中患者康复的新技术。上肢康复机器人能够辅助上肢偏瘫患者完成康复训练、恢复运动能力,并降低医师工作强度,目前已被应用于临床治疗。首先分析人体上肢生理结构,并引出脑卒中患者的康复需求;进而根据交互方式与驱动形式将上肢康复机器人分类,详述其结构特点与应用场景;同时归纳上肢康复机器人的典型控制策略、总结脑卒中量级与运动能力的评定标准;最后,指出目前上肢康复机器人目前面临的挑战,并展望了发展趋势。从医工结合的角度梳理上肢康复机器人的研究现状,总结技术的不足,为本领域的创新和实践提供了研究思路。
中图分类号:
姚玉峰, 裴硕, 郭军龙, 王佳佳. 上肢康复机器人研究综述[J]. 机械工程学报, 2024, 60(11): 115-134.
YAO Yufeng, PEI Shuo, GUO Junlong, WANG Jiajia. Review of Research on Upper-limb Rehabilitation Training Robots[J]. Journal of Mechanical Engineering, 2024, 60(11): 115-134.
[1] JOHNSON C O,NGUYEN M,ROTH G A,et al.Global regional,and national burden of stroke,1990-2016:A systematic analysis for the global burden of disease study 2016[J].The Lancet Neurology,2019,18(5):439-458. [2] FEIGIN V L,NGUYEN G,CERCY K,et al.Global,regional,and country-specific lifetime risks of stroke,1990 and 2016[J].New England Journal of Medicine,2018,379(25):2429-2437. [3] DOUIRI A,RUDD A G,WOLFE C D.Prevalence of poststroke cognitive impairment:South London stroke register 1995-2010[J].Stroke,2013,44(1):138-145. [4] PIZZI A,CARLUCCI G,FALSINI C,et al.Evaluation of upper-limb spasticity after stroke:A clinical and neurophysiologic study[J].Archives of Physical Medicine and Rehabilitation,2005,86(3):410-415. [5] LIVINGSTON-THOMAS J,NELSON P,KARTHIKEYAN S,et al.Exercise and environmental enrichment as enablers of task-specific neuroplasticity and stroke recovery[J].Neurotherapeutics,2016,13(2):395-402. [6] LANGHORNE P,COUPAR F,POLLOCK A.Motor recovery after stroke:A systematic review[J].The Lancet Neurology,2009,8(8):741-754. [7] ZHANG W W,SPEARE S,CHURILOV L,et al.Stroke rehabilitation in China:A systematic review and meta-analysis[J].International Journal of Stroke,2014,9(4):494-502. [8] 《中国脑卒中防治报告》编写组.《中国脑卒中防治报告2019》概要[J].中国脑血管病杂志,2020,17(5):272-281.Report on stroke prevention and treatment in China Writing Group.Brief report on stroke prevention and treatment in China,2019[J].Chinese Journal of Cerebrovascular Diseases,2020,17(5):272-81. [9] 彭亮,侯增广,王晨,等.康复辅助机器人及其物理人机交互方法[J].自动化学报,2018,44(11):2000-2010.PENG Liang,HOU Zengguang,WANG Chen,et al.Physical interaction methods for rehabilitation and assistive robots[J].Acta Automatica Sinica,2018,44(11):2000-2010. [10] NAKAYAMA H,JØRGENSEN H S,RAASCHOU H O,et al.Recovery of upper extremity function in stroke patients:the copenhagen stroke study[J].Archives of Physical Medicine and Rehabilitation,1994,75(4):394-398. [11] ZHANG S,MURPHY T H.Imaging the impact of cortical microcirculation on synaptic structure and sensory-evoked hemodynamic responses in vivo[J].PLoS Biology,2007,5(5):1152-1168. [12] BüTEFISCH C M,KLEISER R,SEITZ R J.Post-lesional cerebral reorganisation:Evidence from functional neuroimaging and transcranial magnetic stimulation[J].Journal of Physiology-Paris,2006,99(4-6):437-454. [13] MURPHY T H,CORBETT D.Plasticity during stroke recovery:From synapse to behaviour[J].Nature Reviews Neuroscience,2009,10(12):861-873. [14] BIASIUCCI A,LEEB R,ITURRATE I,et al.Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke[J].Nature Communications,2018,9(1):1-13. [15] NEUMANN D A.Kinesiology of the musculoskeletal system:Foundation for rehabilitation[M].Mosby&Elsevier,2010. [16] FEARON P,LANGHORNE P.Services for reducing duration of hospital care for acute stroke patients[J].Cochrane Database of Systematic Reviews,2012,2012(9):1-97. [17] HUBBARD I J,PARSONS M W,NEILSON C,et al.Task specific training:Evidence for and translation to clinical practice[J].Occupational Therapy International,2009,16(3-4):175-189. [18] KNIPPENBERG E,VERBRUGGHE J,LAMERS I,et al.Markerless motion capture systems as training device in neurological rehabilitation:A systematic review of their use,application,target population and efficacy[J].Journal of Neuroengineering and Rehabilitation,2017,14(1):1-11. [19] THOMAS L H,FRENCH B,COUPE J,et al.Repetitive task training for improving functional ability after stroke:A major update of a cochrane review[J].Stroke,2017,48(4):e102-e103. [20] BIRKENMEIER R L,PRAGER E M,LANG C E.Translating animal doses of task-specific training to people with chronic stroke in 1-hour therapy sessions:A proof-of-concept study[J].Neurorehabilitation and Neural Repair,2010,24(7):620-635. [21] CORBETTA D,SIRTORI V,CASTELLINI G,et al.Constraint-induced movement therapy for upper extremities in people with stroke[J].The Cochrane Database of Systematic Reviews,2015,(10):1-103. [22] WOLF S L,WINSTEIN C J,MILLER J P,et al.Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke:The EXCITE randomized clinical trial[J].Journal of the American Medical Association,2006,296(17):2095-2104. [23] HOGAN N,KREBS H I,CHARNNARONG J,et al.Mit-manus:A workstation for manual therapy and training[C]//Proceedings of the 1992 IEEE International Workshop on Robot and Human Communication,Tokyo:IEEE,1992:161-165. [24] HOGAN N.Impedance control (an approach to manipulation) part i,ii,iii[J].Trans the ASME,J of Dynamic systems,Measurement and Control,1985,107:1-24. [25] AMIRABDOLLAHIAN F,LOUREIRO R,GRADWELL E,et al.Multivariate analysis of the fugl-meyer outcome measures assessing the effectiveness of GENTLE/S robot-mediated stroke therapy[M].Munich:Journal of Neuroengineering and Rehabilitation,2007:1-16. [26] PERRY J C,ZABALETA H,BELLOSO A,et al.Armassist:A low-cost device for telerehabiltation of post-stroke arm deficits[C]//Proceedings of the World Congress on Medical Physics and Biomedical Engineering,September 7-12,2009,Munich,Germany,Springer,2009:64-67. [27] SICURI C,PORCELLINI G,MEROLLA G.Robotics in shoulder rehabilitation[J].Muscles,Ligaments and Tendons Journal,2014,4(2):207-213. [28] NIYETKALIYEV A S,HUSSAIN S,GHAYESH M H,et al.Review on design and control aspects of robotic shoulder rehabilitation orthoses[J].IEEE Transactions on Human-Machine Systems,2017,47(6):1134-1145. [29] KIM S,NUSSBAUM M,MI M E,et al.Assessing the influence of a passive,upper extremity exoskeletal vest for tasks requiring arm elevation:Part II-"unexpected"effects on shoulder motion,balance,and spine loading[J].Applied Ergonomics,2018,70:323-330. [30] HUNT J,LEE H.Development of a low inertia parallel actuated shoulder exoskeleton robot for the characterization of neuromuscular property during static posture and dynamic movement[C]//Proceedings of the 2019 International Conference on Robotics and Automation (ICRA),Montreal:IEEE,2019:556-562. [31] CHEN Y,LI G,ZHU Y,et al.Design of a 6-DOF upper limb rehabilitation exoskeleton with parallel actuated joints[J].Bio-medical Materials and Engineering,2014,24(6):2527-2535. [32] 陈燕燕.上肢外骨骼机器人康复训练系统研究[D].哈尔滨:哈尔滨工业大学.CHEN Yanyan.Study on upper limb exoskeleton robot rehabilitation training system[D].Harbin:Harbin Institute of Technology. [33] ZEIAEE A,ZARRIN R S,EIB A,et al.Cleverarm:A lightweight and compact exoskeleton for upper-limb rehabilitation[J].IEEE Robotics and Automation Letters,2021,7(2):1880-1887. [34] ZEIAEE A,SOLTANI-ZARRIN R,LANGARI R,et al.Kinematic design optimization of an eight degree-of-freedom upper-limb exoskeleton[J].Robotica,2019,37(12):2073-2086. [35] HE L,XIONG C,LIU K,et al.Mechatronic design of a synergetic upper limb exoskeletal robot and wrench-based assistive control[J].Journal of Bionic Engineering,2018,15(2):247-259. [36] LI J,CAO Q,DONG M,et al.Compatibility evaluation of a 4-DOF ergonomic exoskeleton for upper limb rehabilitation[J].Mechanism and Machine Theory,2021,156:104146. [37] RAHMAN M H,RAHMAN M J,CRISTOBAL O,et al.Development of a whole arm wearable robotic exoskeleton for rehabilitation and to assist upper limb movements[J].Robotica,2015,33(1):19-39. [38] KHAN A M,YUN D W,ALI M A,et al.Adaptive impedance control for upper limb assist exoskeleton[C]//Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA),Washington,2015:4359-4366. [39] LI H Y,CHIEN L Y,HONG H Y,et al.Active control with force sensor and shoulder circumduction implemented on exoskeleton robot NTUH-II[C]//Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),Daejeon,2016:2406-2411. [40] HUANG J,TU X,HE J.Design and evaluation of the rupert wearable upper extremity exoskeleton robot for clinical and in-home therapies[J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2015,46(7):926-935. [41] TIANMIAO W,YUFEI H,XINGBANG Y,et al.Soft robotics structure actuation sensing and control[J].Journal of Mechanical Engineering,2017,53(13):1-13. [42] HAN K,KIM N H,SHIN D.A novel soft pneumatic artificial muscle with high-contraction ratio[J].Soft Robotics,2018,5(5):554-566. [43] SANCHEZ R,WOLBRECHT E,SMITH R,et al.A pneumatic robot for re-training arm movement after stroke:Rationale and mechanical design[C]//Proceedings of the 9th International Conference on Rehabilitation Robotics (ICORR),Chicago.IEEE,2005:500-504. [44] WOLBRECHT E T,LEAVITT J,REINKENSMEYER D J,et al.Control of a pneumatic orthosis for upper extremity stroke rehabilitation[C]//Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society,New York.IEEE,2006:2687-2693. [45] KLEIN J,SPENCER S,ALLINGTON J,et al.Biomimetic orthosis for the neurorehabilitation of the elbow and shoulder (bones)[C]//Proceedings of the 20082nd IEEE RAS&EMBS international conference on biomedical robotics and biomechatronics,Scottsdale,IEEE,2008:535-541. [46] KLEIN J,SPENCER S,ALLINGTON J,et al.Optimization of a parallel shoulder mechanism to achieve a high-force,low-mass,robotic-arm exoskeleton[J].IEEE Transactions on Robotics,2010,26(4):710-715. [47] DOS SANTOS W M,CAURIN G A,SIQUEIRA A A.Design and control of an active knee orthosis driven by a rotary series elastic actuator[J].Control Engineering Practice,2017,100(58):307-318. [48] AYOUBI Y,LARIBI M A,ZEGHLOUL S,et al.V2som:A novel safety mechanism dedicated to a cobot's rotary joints[J].Robotics,2019,8(1):18-33. [49] WOLF S,GRIOLI G,EIBERGER O,et al.Variable stiffness actuators:Review on design and components[J].IEEE/ASME Transactions on Mechatronics,2015,21(5):2418-2430. [50] CHEN T,CASAS R,LUM P S.An elbow exoskeleton for upper limb rehabilitation with series elastic actuator and cable-driven differential[J].IEEE Transactions on Robotics,2019,35(6):1464-1474. [51] TRIGILI E,CREA S,MOISèM,et al.Design and experimental characterization of a shoulder-elbow exoskeleton with compliant joints for post-stroke rehabilitation[J].IEEE/ASME Transactions on Mechatronics,2019,24(4):1485-1496. [52] CEMPINI M,GIOVACCHINI F,VITIELLO N,et al.Neuroexos:A powered elbow orthosis for post-stroke early neurorehabilitation[C]//Proceedings of the 201335th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),Osaka:IEEE,2013:342-345. [53] PILLA A,TRIGILI E,MCKINNEY Z,et al.Robotic rehabilitation and multimodal instrumented assessment of post-stroke elbow motor functions-a randomized controlled trial protocol[J].Frontiers in Neurology,2020,11:587293-587293. [54] ZIMMERMANN Y,KÜÇÜKTABAK E B,FARSHIDIAN F,et al.Towards dynamic transparency:Robust interaction force tracking using multi-sensory control on an arm exoskeleton[C]//Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),Las Vegas.IEEE,2020:7417-7424. [55] KIM B,DESHPANDE A D.An upper-body rehabilitation exoskeleton Harmony with an anatomical shoulder mechanism:Design,modeling,control,and performance evaluation[J].The International Journal of Robotics Research,2017,36(4):414-435. [56] CALANCA A,FIORINI P.Impedance control of series elastic actuators based on well-defined force dynamics[J].Robotics and Autonomous Systems,2017,96:81-92. [57] OH S,KONG K.High precision robust force control of a series elastic actuator[J].IEEE/ASME Transactions on Mechatronics,2017,22(1):71-80. [58] MURPHY T H,CORBETT D.Plasticity during stroke recovery:From synapse to behaviour[J].Nature Reviews Neuroscience,2009,10(12):861. [59] HATEM S M,SAUSSEZ G,DELLA FAILLE M,et al.Rehabilitation of motor function after stroke:A multiple systematic review focused on techniques to stimulate upper extremity recovery[J].Frontiers in Human Neuroscience,2016,10:442. [60] LANGHORNE P,BERNHARDT J,KWAKKEL G.Stroke rehabilitation[J].The Lancet,2011,377(9778):1693-1702. [61] KWAKKEL G,VEERBEEK J M,VAN WEGEN E E,et al.Constraint-induced movement therapy after stroke[J].The Lancet Neurology,2015,14(2):224-234. [62] PROIETTI T,CROCHER V,ROBY-BRAMI A,et al.Upper-limb robotic exoskeletons for neurorehabilitation:A review on control strategies[J].IEEE Reviews in Biomedical Engineering,2016,9(1):4-14. [63] GULL M A,BAI S,BAK T.A review on design of upper limb exoskeletons[J].Robotics,2020,9(1):16. [64] BASCHUNG PFISTER P,DE BRUIN E D,STERKELE I,et al.Manual muscle testing and hand-held dynamometry in people with inflammatory myopathy:An intra-and interrater reliability and validity study[J].PloS One,2018,13(3):e0194531-e0194531. [65] LEE S J,CHUN M H.Combination transcranial direct current stimulation and virtual reality therapy for upper extremity training in patients with subacute stroke[J].Archives of Physical Medicine and Rehabilitation,2014,95(3):431-438. [66] CHUNG W K,FU L C,KRÖGER T.Motion control[M].Springer Handbook of Robotics.Springer.2016. [67] OTTEN A,VOORT C,STIENEN A,et al.Limpact:A hydraulically powered self-aligning upper limb exoskeleton[J].IEEE/ASME Transactions on Mechatronics,2015,20(5):2285-2298. [68] ALI A,AHMED S F,KADIR K A,et al.Fuzzy PID controller for upper limb rehabilitation robotic system[C]//Proceedings of the 2018 IEEE International Conference on Innovative Research and Development (ICIRD),Bangkok:IEEE,2018:1-5. [69] AMIRI M S,RAMLI R,IBRAHIM M F.Hybrid design of PID controller for four DOF lower limb exoskeleton[J].Applied Mathematical Modelling,2019,72:17-27. [70] RAHMAN M H,SAAD M,OCHOA-LUNA C,et al.Cartesian trajectory tracking of an upper limb exoskeleton robot[C]//Proceedings of the IECON 2012-38th Annual Conference on IEEE Industrial Electronics Society,Montreal.IEEE,2012:2668-2673. [71] WU Q,WANG X,CHEN B,et al.Development of an RBFN-based neural-fuzzy adaptive control strategy for an upper limb rehabilitation exoskeleton[J].Mechatronics,2018,53(100):85-94. [72] JOHNSON M,WISNESKI K,ANDERSON J,et al.Development of adler:The activities of daily living exercise robot[C]//Proceedings of the The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob),Pisa.IEEE,2006:881-886. [73] ALSHAHRANI Y,ZHOU Y,CHEN C,et al.Performance validation of an upper limb exoskeleton using joint ROM signal[J].Archives of Orthopaedics,2021,2(1):20-29. [74] AKDOĞAN E,AKTAN M E,KORU A T,et al.Hybrid impedance control of a robot manipulator for wrist and forearm rehabilitation:Performance analysis and clinical results[J].Mechatronics,2018,49:77-91. [75] KUMAR S,WÖHRLE H,TRAMPLER M,et al.Modular design and decentralized control of the recupera exoskeleton for stroke rehabilitation[J].Applied Sciences,2019,9(4):626. [76] ZHAO Y,LIANG C,GU Z,et al.A new design scheme for intelligent upper limb rehabilitation training robot[J].International Journal of Environmental Research and Public Health,2020,17(8):2948. [77] WANG W W,FU L C.Mirror therapy with an exoskeleton upper-limb robot based on IMU measurement system[C]//Proceedings of the 2011 IEEE International Symposium on Medical Measurements and Applications (MeMeA),Bari.IEEE,2011:370-375. [78] CATY G D,DETREMBLEUR C,BLEYENHEUFT C,et al.Effect of upper limb botulinum toxin injections on impairment,activity,participation,and quality of life among stroke patients[J].Stroke,2009,40(7):2589-2591. [79] HOGAN N.Impedance control of industrial robots[J].Robotics and Computer-integrated Manufacturing,1984,1(1):97-113. [80] HOGAN N.Impedance control:An approach to manipulation[C]//Proceedings of the American Control Conference,1984:304-313. [81] OTT C,MUKHERJEE R,NAKAMURA Y.Unified impedance and admittance control[C]//Proceedings of the 2010 IEEE International Conference on Robotics&Automation (ICRA),Anchorage,2010:554-561. [82] KIM B,DESHPANDE A D.Controls for the shoulder mechanism of an upper-body exoskeleton for promoting scapulohumeral rhythm[C]//Proceedings of the 2015 IEEE International Conference on Rehabilitation Robotics (ICORR),Singapore,2015. [83] HOSSEINI Z-S,PEYROVI H,GOHARI M.The effect of early passive range of motion exercise on motor function of people with stroke:A randomized controlled trial[J].Journal of Caring Sciences,2019,8(1):39. [84] KIM H,MILLER L M,LI Z,et al.Admittance control of an upper limb exoskeleton-reduction of energy exchange[C]//Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society,San Diego.IEEE,2012:6467-6470. [85] JIANG N,ENGLEHART K B,PARKER P A.Extracting simultaneous and proportional neural control information for multiple-DOF prostheses from the surface electromyographic signal[J].IEEE Transactions on Biomedical Engineering,2008,56(4):1070-1080. [86] DO A H,WANG P T,KING C E,et al.Brain-computer interface controlled robotic gait orthosis[J].Journal of Neuroengineering and Rehabilitation,2013,10(1):1-9. [87] NOVAK D,RIENER R.A survey of sensor fusion methods in wearable robotics[J].Robotics and Autonomous Systems,2015,73:155-170. [88] BEAN B P.The action potential in mammalian central neurons[J].Nature Reviews Neuroscience,2007,8(6):451-465. [89] 姚玉峰,杨云龙,郭军龙,等.膝关节术后康复训练机器人研究综述[J].机械工程学报,2021,57(5):1-18.YAO Yufeng,YANG Yunlong,GUO Junlong,et al.Review of research on knee-postoperative rehabilitation training robot[J].Journal of Mechanical Engineering,2021,57(5):1-18. [90] ROSEN J,BRAND M,FUCHS M B,et al.A myosignal-based powered exoskeleton system[J].IEEE Transactions on Systems,Man,and Cybernetics-part A:Systems and Humans,2001,31(3):210-222. [91] GOPURA R A R C,KIGUCHI K,LI Y.SUEFUL-7:A 7DOF upper-limb exoskeleton robot with muscle-model-oriented EMG-based control[C]//Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems,Missouri:IEEE,2009:1126-1131. [92] KIGUCHI K,HAYASHI Y.An EMG-based control for an upper-limb power-assist exoskeleton robot[J].IEEE Transactions on Systems,Man,and Cybernetics,Part B (Cybernetics),2012,42(4):1064-1071. [93] JIE L,HOON K S,DALI X,et al.EMG-based continuous and simultaneous estimation of arm kinematics in able-bodied individuals and stroke survivors[J].Frontiers in Neuroence,2017,11:480. [94] BUNDY D T,SOUDERS L,BARANYAI K,et al.Contralesional brain-computer interface control of a powered exoskeleton for motor recovery in chronic stroke survivors[J].Stroke,2017,48(7):1908-1915. [95] 唐智川,孙守迁,张克俊.基于运动想象脑电信号分类的上肢康复外骨骼控制方法研究[J].机械工程学报,2017,53(10):60-69.TANG Zhichuan,SUN Shouqian,ZHANG Kejun,et al.Research on the control method of an upper-limb rehabilitation exoskeleton based on classification of motor imagery eeg[J].Journal of Mechanical Engineering,2017,53(10):60-69. [96] JUST F,ÖZENÖ,BÖSCH P,et al.Exoskeleton transparency:Feed-forward compensation vs.disturbance observer[J].AT-Automatisierungstechnik,2018,66(12):1014-1026. [97] SUN J,SHEN Y,ROSEN J.Sensor reduction,estimation,and control of an upper-limb exoskeleton[J].IEEE Robotics and Automation Letters,2021,6(2):1012-1019. [98] SHEN Y,MA J,DOBKIN B,et al.Asymmetric dual arm approach for post stroke recovery of motor functions utilizing the EXO-UL8 exoskeleton system:a pilot study[C]//Proceedings of the 201840th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC),Hawaii.IEEE,2018:1701-1707. [99] MURAKAMI T,YU F,OHNISHI K.Torque sensorless control in multidegree-of-freedom manipulator[J].IEEE Transactions on Industrial Electronics,1993,40(2):259-265. [100] UGURLU B,NISHIMURA M,HYODO K,et al.A framework for sensorless torque estimation and control in wearable exoskeletons[C]//Proceedings of the 201212th IEEE international workshop on advanced motion control (AMC),Sarajevo.IEEE,2012:1-7. [101] PEHLIVAN A U,LOSEY D P,O'MALLEY M K.Minimal assist-as-needed controller for upper limb robotic rehabilitation[J].IEEE Transactions on Robotics,2015,32(1):113-124. [102] MAO Y,JIN X,DUTTA G G,et al.Human movement training with a cable driven arm exoskeleton (CAREX)[J].IEEE Transactions on Neural Systems and Rehabilitation Engineering,2014,23(1):84-92. [103] KREBS H I,PALAZZOLO J J,DIPIETRO L,et al.Rehabilitation robotics:Performance-based progressive robot-assisted therapy[J].Autonomous Robots,2003,15(1):7-20. [104] MIHELJ M,NEF T,RIENER R.A novel paradigm for patient-cooperative control of upper-limb rehabilitation robots[J].Advanced Robotics,2007,21(8):843-867. [105] BROKAW E B,MURRAY T,NEF T,et al.Retraining of interjoint arm coordination after stroke using robot-assisted time-independent functional training[J].Journal of Rehabilitation Research and Development,2011,48(4):299-316. [106] REN Y,PARK H S,ZHANG L Q.Developing a whole-arm exoskeleton robot with hand opening and closing mechanism for upper limb stroke rehabilitation[C]//Proceedings of the 2009 IEEE International Conference on Rehabilitation Robotics (ICORR),Kyoto.IEEE,2009:761-765. [107] MANNA S K,DUBEY V N.A portable elbow exoskeleton for three stages of rehabilitation[J].Journal of Mechanisms and Robotics,2019,11(6):065002. [108] 张通.中国脑卒中康复治疗指南(2011完全版)[J].中国医学前沿杂志(电子版),2012,4(6):55-76.ZHANG Tong.Guidelines for chinese stroke rehabilitation treatment (2011 complete edition)[J].Chinese Journal of the Frontiers of Medical Science (Electronic Version),2012,4(6):55-76. [109] CUTHBERT S C,GOODHEART G J.On the reliability and validity of manual muscle testing:A literature review[J].Chiropractic&Osteopathy,2007,15(1):1-23. [110] CHARALAMBOUS C P.Interrater reliability of a modified Ashworth scale of muscle spasticity[M].London:Classic Papers in Orthopaedics,2014:415-417. [111] KWAH L K,DIONG J.National institutes of health stroke scale (NIHSS)[J].Journal of Physiotherapy,2014,1(60):61. [112] HUANG C,LIN G,HUANG Y,et al.Improving the utility of the Brunnstrom recovery stages in patients with stroke:Validation and quantification[J].Medicine,2016,95(31):e4508-e4508. [113] SINGER B,GARCIA-VEGA J.The fugl-meyer upper extremity scale[J].Journal of Physiotherapy,2016,63(1):53-53. [114] BOUWSTRA H,SMIT E B,WATTEL E M,et al.Measurement properties of the barthel index in geriatric rehabilitation[J].Journal of the American Medical Directors Association,2019,20(4):420-425. [115] NORDIN N,XIE S Q,WÜNSCHE B.Assessment of movement quality in robot-assisted upper limb rehabilitation after stroke:A review[J].Journal of Neuroengineering and Rehabilitation,2014,11(1):1-23. [116] DE OLIVEIRA A C,SULZER J S,DESHPANDE A D.Assessment of upper-extremity joint angles using harmony exoskeleton[J].IEEE Transactions on Neural Systems and Rehabilitation Engineering,2021,29:916-925. [117] MATTAR A A,GRIBBLE P L.Motor learning by observing[J].Neuron,2005,46(1):153-160. [118] FRANKEN M,STRAMIGIOLI S,MISRA S,et al.Bilateral telemanipulation with time delays:A two-layer approach combining passivity and transparency[J].IEEE Transactions on Robotics,2011,27(4):741-756. |
[1] | 岳晓明, 臧烁, 徐作珂, 张勤河, 张建华, 霍孟友. 基于6自由度串联机器人的电火花铣削加工轨迹规划及伺服控制策略研究[J]. 机械工程学报, 2023, 59(9): 20-27. |
[2] | 施国标, 张洪泉, 王帅, 鞠程赟, 桑冬岗. 电液耦合转向系统应急转向控制方法研究[J]. 机械工程学报, 2023, 59(6): 149-158. |
[3] | 刘琪, 卢红, 张新宝, 代家舜. 基于机电-刚柔混合的H型双驱进给系统状态相关动态特性分析[J]. 机械工程学报, 2023, 59(3): 98-109. |
[4] | 马文杰, 张波, 丘东元, 陈艳峰, 孙华东. 跟网型并网变换器的稳定域重塑控制策略研究综述*[J]. 电气工程学报, 2023, 18(2): 34-51. |
[5] | 谢明睿, 赖纪东, 苏建徽, 周晨光. 基于超前角结合MTPV的SPMSM复合弱磁控制策略*[J]. 电气工程学报, 2022, 17(3): 114-121. |
[6] | 熊力颖, 何晓琼, 韩鹏程, 龚子, 王卓然. 基于改进控制策略的交直流独立光储电源系统[J]. 电气工程学报, 2022, 17(3): 95-103. |
[7] | 林泽宁, 蒋涛, 罗自荣, 白向娟, 尚建忠. 基于活性生物组织的肌肉驱动机器人研究进展[J]. 机械工程学报, 2022, 58(13): 22-35. |
[8] | 刘艳东, 胡祎文, 陈楠, 王菁月, 邵鑫铭, 裴忠晨, 刘闯. 光储微电网功率优化方法及协调控制策略研究*[J]. 电气工程学报, 2022, 17(1): 22-30. |
[9] | 姚玉峰, 杨云龙, 郭军龙, 裴硕, 孙立宁. 膝关节术后康复训练机器人研究综述[J]. 机械工程学报, 2021, 57(5): 1-18. |
[10] | 张雷, 刘青松, 王震坡. 四轮轮毂电机驱动电动汽车电液复合制动平顺性控制策略[J]. 机械工程学报, 2020, 56(24): 125-134. |
[11] | 李小彭, 尚东阳, 陈仁桢, 闻邦椿. 基于机械臂位姿变换的柔性负载伺服驱动系统控制策略[J]. 机械工程学报, 2020, 56(21): 56-69. |
[12] | 林歆悠, 郑清香, 吴超宇. 基于GA-ECMS电机转矩优化的混合动力系统协调控制[J]. 机械工程学报, 2020, 56(2): 145-153. |
[13] | 张渊博, 王伟达, 张华, 杨超, 项昌乐, 李亮. 基于新型改进遗传算法的混合动力客车高效制动能量回收预测控制策略研究[J]. 机械工程学报, 2020, 56(18): 105-115. |
[14] | 喻曹丰, 王传礼, 解甜, 杨林建, 姜志. 基于GMM的高性能微定位工作台驱动系统的研制[J]. 机械工程学报, 2019, 55(9): 136-143. |
[15] | 赵鹏宇, 陈英龙, 周华, 杨华勇. 基于转矩预测的混合动力挖掘机控制策略[J]. 机械工程学报, 2018, 54(1): 99-106. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||