机械工程学报 ›› 2023, Vol. 59 ›› Issue (9): 90-100.doi: 10.3901/JME.2023.09.090
孙朝阳1, 彭芳瑜1,2, 唐小卫1, 闫蓉1, 辛世豪1, 吴嘉伟1
收稿日期:
2022-05-04
修回日期:
2022-11-12
出版日期:
2023-05-05
发布日期:
2023-07-19
通讯作者:
唐小卫(通信作者),男,1985年出生,博士,副教授,硕士研究生导师。主要研究方向为机器人铣削加工动力学、误差测量和精度控制。E-mail:txwysxf@126.com
E-mail:txwysxf@126.com
作者简介:
孙朝阳,男,1998年出生。主要研究方向为机器人铣削加工动力学。E-mail:m202070588@hust.edu.cn彭芳瑜,男,1972年出生,博士,教授,博士研究生导师。主要研究方向为数控加工技术、机器人加工和智能制造等。E-mail:pengfy@hust.edu.cn;闫蓉,女,1973年出生,博士,教授,博士研究生导师。主要研究方向为多轴数控加工。E-mail:yanrong@hust.edu.cn
基金资助:
SUN Zhaoyang1, PENG Fangyu1,2, TANG Xiaowei1, YAN Rong1, XIN Shihao1, WU Jiawei1
Received:
2022-05-04
Revised:
2022-11-12
Online:
2023-05-05
Published:
2023-07-19
摘要: 机器人铣削加工存在模态耦合颤振和再生颤振现象,有效地进行机器人铣削加工颤振类型的辨识是进行颤振精准抑制和保证加工质量的基础。为此,提出一种基于自适应变分模态分解与功率谱熵差的颤振类型辨识(AVMD-ΔPSE)方法。通过分析机器人铣削加工颤振特性和主导模态,将机器人铣削颤振分为机器人结构模态主导的模态耦合颤振和刀具-主轴结构模态主导的再生颤振两种类型。为了提取颤振敏感子信号,利用自适应变分模态分解方法对原始信号进行分解,根据功率谱熵和频率消除算法设计功率谱熵差颤振类型辨识指标,结合多组试验数据采用高斯混合模型自适应地确定辨识指标最佳分类阈值。颤振辨识试验表明机床铣削加工颤振辨识方法运用于机器人铣削加工中仅能识别颤振却无法区分不同的颤振类型,而AVMD-ΔPSE方法能准确有效地辨识和区分机器人铣削加工中的模态耦合颤振和再生颤振,为机器人铣削颤振的针对性抑制提供理论指导。
中图分类号:
孙朝阳, 彭芳瑜, 唐小卫, 闫蓉, 辛世豪, 吴嘉伟. 基于自适应变分模态分解与功率谱熵差的机器人铣削加工颤振类型辨识[J]. 机械工程学报, 2023, 59(9): 90-100.
SUN Zhaoyang, PENG Fangyu, TANG Xiaowei, YAN Rong, XIN Shihao, WU Jiawei. Robotic Milling Chatter Types Detection Based on Adaptive VariationalMode Decomposition and Difference of Power Spectral Entropy[J]. Journal of Mechanical Engineering, 2023, 59(9): 90-100.
[1] 郝大贤,王伟,王琦珑,等. 复合材料加工领域机器人的应用与发展趋势[J]. 机械工程学报,2019,55(3):1-17. HAO Daxian,WANG Wei,WANG Qilong,et al. Applications and development trend of robotics in composite material process[J]. Journal of Mechanical Engineering,2019,55(3):1-17. [2] YUAN L,PAN Z X,DING D H,et al. A review on chatter in robotic machining process regarding both regenerative and mode coupling mechanism[J]. IEEE/ASME Transactions on Mechatronics:A joint publication of the IEEE Industrial Electronics Society and the ASME Dynamic Systems and Control Division,2018,23(5):2240-2251. [3] 文科,张加波,乐毅,等. 数控驱动的移动铣削机器人精度提升方法[J]. 机械工程学报,2021,57(5):72-80. WEN Ke,ZHANG Jiabo,YUE Yi,et al. Method for improving accuracy of NC-driven mobile milling robot[J]. Journal of Mechanical Engineering,2021,57(5):72-80. [4] ZHU Z R,TANG X W,CHEN C,et al. High precision and efficiency robotic milling of complex parts:Challenges,approaches and trends[J]. Chinese Journal of Aeronautics,2022,35(2):22-46. [5] PAN Z X,ZHANG H,ZHU Z Q,et al. Chatter analysis of robotic machining process[J]. Journal of Materials Processing Technology,2006,173(3):301-309. [6] CELIKAG H,OZTURK E,SIMS N D. Can mode coupling chatter happen in milling?[J]. International Journal of Machine Tools and Manufacture,2021,165:103738. [7] ZHANG X J,XIONG C H,DING Y,et al. Milling stability analysis with simultaneously considering the structural mode coupling effect and regenerative effect[J]. International Journal of Machine Tools and Manufacture,2011,53(1):127-140. [8] HAO D X,WANG W,LIU Z H,et al. Experimental study of stability prediction for high-speed robotic milling of aluminum[J]. Journal of Vibration and Control,2019,26(7-8):387-398. [9] GIENKE O,PAN Z X,YUAN L,et al. Mode coupling chatter prediction and avoidance in robotic machining process[J]. The International Journal of Advanced Manufacturing Technology,2019,104(5-8):2103-2116. [10] CORDES M,HINTZE W,ALTINTAS Y. Chatter stability in robotic milling[J]. Robotics and Computer Integrated Manufacturing,2019,55:11-18. [11] 张智,刘成颖,刘辛军,等. 采用小波包能量熵的铣削振动状态分析方法研究[J]. 机械工程学报,2018,54(21):57-62. ZHANG Zhi,LIU Chengying,LIU Xinjun,et al. Analysis of milling vibration state based on the energy entropy of WPD[J]. Journal of Mechanical Engineering,2018,54(21):57-62. [12] ZHANG Z,LI H G,MENG G,et al. Chatter detection in milling process based on the energy entropy of VMD and WPD[J]. International Journal of Machine Tools and Manufacture,2016,108:106-112. [13] LI X,MEI D Q,CHEN Z C. An effective EMD-based feature extraction method for boring chatter recognition[J]. Applied Mechanics and Materials,2010,1021(69):1058-1063. [14] CAO H R,ZHOU K,CHEN X F. Chatter identification in end milling process based on EEMD and nonlinear dimensionless indicators[J]. International Journal of Machine Tools and Manufacture,2015,92:52-59. [15] DRAGOMIRETSKIY K,ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing:A publication of the IEEE Signal Processing Society,2014,62(3):531-544. [16] LI X H,WAN S K,HUANG X W,et al. Milling chatter detection based on VMD and difference of power spectral entropy[J]. The International Journal of Advanced Manufacturing Technology,2020,111(7-8):2051-2063. [17] LIU C F,ZHU L D,NI C B. Chatter detection in milling process based on VMD and energy entropy[J]. Mechanical Systems and Signal Processing,2018,105:169-182. [18] WANG Y,ZHANG M K,TANG X W,et al. A kMap optimized VMD-SVM model for milling chatter detection with an industrial robot[J]. Journal of Intelligent Manufacturing,2022,33(5):1483-1502. [19] WANG L M,SHAO Y M,CAO Z. Optimal demodulation subband selection for sun gear crack fault diagnosis in planetary gearbox[J]. Measurement,2018,125:554-563. [20] 潘亚兵. 运行状态下的数控机床结构动力学主导特性研究[D]. 武汉:华中科技大学,2016. PAN Yabing. Research on dominant characteristics of CNC machine tool structure dynamics under operational conditions[D]. Wuhan:Huazhong University of Science and Technology,2016. [21] 刘长福,朱立达,仇健,等. 基于VMD和FFT的变切深侧铣颤振特征提取方法[J]. 东北大学学报(自然科学版),2018,39(8):1153-1157. LIU Changfu,ZHU Lida,QIU Jian,et al. Chatter feature extraction method in variable cutting depth flank milling based on VMD and FFT[J]. Journal of Northeastern University (Natural Science),2018,39(8):1153-1157. [22] 张磊,郑侃,孙连军,等. 基于小波包敏感频带选择的复材铣边颤振监测研究[J]. 机械工程学报,2022,58(3):140-148. ZHANG Lei,ZHENG Kan,SUN Lianjun,et al. Investigation on chatter monitoring of composite milling edge based on the selection of sensitive frequency band of wavelet packet[J]. Journal of Mechanical Engineering,2022,58(3):140-148. [23] FU Y,ZHANG Y,ZHOU H M,et al. Timely online chatter detection in end milling process[J]. Mechanical Systems and Signal Processing,2016,75:668-688. |
[1] | 雷震, 姜宏, 章翔峰, 李军, 孔艺一, 白宇. 行星齿轮系统齿裂纹演化分析[J]. 机械工程学报, 2024, 60(19): 101-115. |
[2] | 陈耿彪, 刘志文, 尹来容, 易继军, 张拓. 半主动三附气室空气弹簧吸振器特性分析[J]. 机械工程学报, 2024, 60(17): 194-207. |
[3] | 侯旭朝, 马越, 项昌乐. 电驱动履带车辆转向稳定性控制研究[J]. 机械工程学报, 2024, 60(8): 233-244. |
[4] | 高楠, 王世宇, 夏春花, 魏振航. 变截面单元环状周期结构固有频率分裂规律研究[J]. 机械工程学报, 2024, 60(7): 114-123. |
[5] | 商德勇, 黄欣怡, 黄云山, 张天佑. 基于Kane方程的Delta并联机器人刚柔耦合动力学研究[J]. 机械工程学报, 2024, 60(7): 124-133. |
[6] | 汪恒, 黄薇, 季宏丽, 裘进浩. 基于“桥式”阻尼声学黑洞结构的振动抑制机理分析[J]. 机械工程学报, 2024, 60(7): 134-143. |
[7] | 马召召, 周瑞平, 杨庆超, LEE Heow Pueh, 柴凯. 含电磁分流阻尼双层准零刚度隔振系统的动力学特性分析[J]. 机械工程学报, 2024, 60(5): 157-168. |
[8] | 邓聪颖, 邓子豪, 林丽君, 陈翔, 马莹, 禄盛. 基于迁移学习的变刀具-刀柄夹持状态下数控铣削稳定性预测研究[J]. 机械工程学报, 2024, 60(3): 296-304. |
[9] | 杨亮亮, 来孝楠, 何西旺, 李鹏, 郭正刚, 宋学官. 面向飞机机翼数字孪生的在线加速度积分方法[J]. 机械工程学报, 2024, 60(2): 342-355. |
[10] | 李月昊, 胡茑庆, 程哲, 尹正阳, 黄良远. 基于惯容的浮筏隔振系统人工自愈技术研究[J]. 机械工程学报, 2023, 59(18): 13-21. |
[11] | 宾光富, 钟新利, 张阳演, 杨峰, 陈安华. 基于压电驱动浮环轴承间隙可调的涡轮增压器转子瞬变振动主动控制[J]. 机械工程学报, 2023, 59(18): 31-41. |
[12] | 暴一帆, 姚剑飞, 高金吉. 基于自适应浸入和不变理论的转子多频振动靶向抑制[J]. 机械工程学报, 2023, 59(18): 111-120. |
[13] | 左彦飞, 李宁, 马波, 史守州, 冯坤. 基于多体接触瞬态动力学不对中故障模拟及试验验证[J]. 机械工程学报, 2023, 59(13): 133-147. |
[14] | 李春明, 鲍珂. 基于载荷传递路径的履带车辆多层级耦合动力学建模与分析[J]. 机械工程学报, 2023, 59(13): 157-174. |
[15] | 王汝贵, 陈辉庆, 董奕辰. 可控变胞式码垛机器人非线性动态可靠性分析[J]. 机械工程学报, 2023, 59(11): 189-200. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||