[1] 刘傲. 激光熔覆过程低碳建模与工艺参数优化[D]. 沈阳:沈阳工业大学,2021.LIU Ao. Low carbon modeling and process parameter optimization in laser cladding process[D]. Shenyang:Shenyang University of Technology,2021. [2] 姜兴宇,刘傲,杨国哲,等.激光增材制造过程低碳建模与工艺参数优化[J].机械工程学报,2022,58(5):223-238. JIANG Xingyu,LIU Ao,YANG Guozhe,et al. Low-carbon modeling and process parameter optimization in laser additive manufacturing process[J]. Journal of Mechanical Engineering,2022,58(5):223-238. [3] PENG T. Analysis of energy utilization in 3D printing processes[J]. Procedia CIRP,2016(40):62-67. [4] PAUL R,ANAND S. Process energy analysis and optimization in selective laser sintering[J]. Journal of Manufacturing Systems,2012,31(4):429-437. [5] JIANG X Y,TIAN Z Q,LIU W J,et al. An energy-efficient method of laser remanufacturing process[J]. Sustainable Energy Technologies and Assessments,2022,52(C):102201. [6] AHMAD N,ENEMUOH E U. Energy modeling and eco impact evaluation in direct metal laser sintering hybrid milling[J]. Heliyon,2020,6(1):e03168. [7] ZHANG P R,DU J,ZHOU T T,et al. Sustainable manufacturing:re-contouring of laser cladding restored parts by machining method with cutting energy management[J]. Archives of Civil and Mechanical Engineering,2020,20(2):42. [8] 肖罡,高彬,韩燕,等.选择性激光熔覆快速成形工艺过程能效分析与优化[J].机械工程材料,2021,45(10):75-83. XIAO Gang,GAO Bin,HAN Yan,et al. Energy efficiency analysis and optimization of selective laser melting rapid formation process[J]. Materials for Mechanical Engineering,2021,45(10):75-83. [9] 董萌萌,李涛,郭燕春,等.激光熔覆系统能耗建模分析方法研究[J].大连理工大学学报,2018,58(3):229-237. DONG Mengmeng,LI Tao,GUO Yanchun,et al. Research on energy consumption modeling and analysis method of laser cladding system[J]. Journal of Dalian University of Technology,2018,58(3):229-237. [10] NGUYEN T T,PHAM Q H,DANG X P,et al. Optimization parameters of milling process of mould material for decreasing machining power and surface roughness criteria[J]. Tehnicki Vjesnik,2019,26(5):1297-1304. [11] CHEN X Z,LI C B,TANG Y,et al. Integrated optimization of cutting tool and cutting parameters in face milling for minimizing energy footprint and production time[J]. Energy,2019(175):1021-103. [12] CAO W D,YAN C P,WU D J,et al. A novel multi-objective optimization approach of machining parameters with small sample problem in gear hobbing[J]. The International Journal of Advanced Manufacturing Technology,2017,93(09-12):4099-4010. [13] 易茜,柳淳,李聪波,等.基于小样本数据驱动的滚齿工艺参数低碳优化决策方法[J/OL].中国机械工程,2022:1-15.[2022-04-09].http://kns.cnki.net/kcms/detail/42.1294.TH.20220328.1210.004.html. YI Qian,LIU Chun,LI Congbo,et al. A low carbon optimization decision method for gear hobbing process parameters driven by small sample data[J]. China Mechanical Engineering,2022:1-15.[2022-04-09]. http://kns.cnki.net/kcms/detail/42.1294.TH.20220328.1210.004.html. [14] 倪恒欣,阎春平,陈建霖,等.高速干切滚齿工艺参数的多目标优化与决策方法[J].中国机械工程,2021,32(7):832-838. NI Hengxin,YAN Chunping,CHEN Jianlin,et al. Multi-objective optimization and decision-making method of high speed dry gear hobbing processing parameters[J]. China Mechanical Engineering,2021,32(7):832-838. [15] 李聪波,付松,陈行政,等.面向高效节能的数控滚齿加工参数多目标优化模型[J].计算机集成制造系统,2020,26(3):676-687. LI Congbo,FU Song,CHEN Xingzheng,et al. Multi-objective CNC gear hobbing parameters optimization model for high efficiency and energy saving[J]. Computer Integrated Manufacturing Systems,2020,26(3):676-687. [16] 黄文良,邓朝晖,吕黎曙,等.面向低碳高效的铣削工艺参数优化及应用[J].机械制造与自动化,2019,48(3):12-16. HUANG Wenliang,DENG Chaohui,LÜ Lishu,et al. Research on milling parameters optimization for low carbon and high efficiency[J]. Machine Building & Automation,2019,48(3):12-16. [17] LI C B,TANG Y,CUI L G,et al. A quantitative approach to analyze carbon emissions of CNC-based machining system[J]. Journal of Intelligent Manufacturing,2015,26(5):911-922. [18] 李琦,纪沙沙,李万发,等.工艺参数对2A12铝合金微弧氧化膜层组织和腐蚀性能的影响[J].热加工工艺,2021(22):108-112. LI Qi,JI Shasha,LI Wanfa,et al. Effect of Process parameters on microstructure and corrosion properties of 2A12 aluminum alloy micro-arc oxidation films[J]. Hot Working Technology,2021(22):108-112. [19] LI K,CHEN R,FU G,et al. Two-archive evolutionary algorithm for constrained multi-objective optimization[J]. IEEE Transactions on Evolutionary Computation,2019,23(2):303-315. [20] FAN Z,LI W,CAI X,et al. Push and pull search for solving constrained multi-objective optimization problems[J]. Swarm Evolutionary Computation,2019(44):665-679. [21] TIAN Y,ZHANG T,XIAO J H,et al. A coevolutionary framework for constrained multi-objective Optimization Problems[J]. IEEE Transactions on Evolutionary Computation,2021,25(1):102-116. [22] DEB K,PRATAP A,AGARWAL S,et al. A fast and elitist multiobjective genetic algorithm:NSGA-II[J]. IEEE Transactions on Evolutionary Computation,2002,6(2):182-197. [23] 陈志远,伍章俊,童珊珊.基于改进双归档进化算法的多目标动态软件项目调度[J].计算机集成制造系统,2021,27(9):2565-2574. CHEN Zhiyuan,WU Zhangjun,TONG Shanshan,et al. Multi-objective dynamic software project scheduling based on improved two-archive evolutionary algorithm[J]. Computer Integrated Manufacturing Systems,2021,27(9):2565-2574. [24] 张玲,张钹.佳点集遗传算法[J].计算机学报,2001,24(9):917-922. ZHANG Ling,ZHANG Ba. Good point set based genetic algorithm[J]. Chinese Journal of Computers,2001,24(9):917-922. [25] HU L Z,WU C S,WANG Y L,et al. Research on optimal decision-making of cloud manufacturing service provider based on grey correlation analysis and TOPSIS[J]. International Journal of Production Research,2019,58(3):748-757. [26] LI K,CHEN R Z,FU G T,et al. Two-archive evolutionary algorithm for constrained multi-objective optimization[J]. IEEE Transactions on Evolutionary Computation,2019,23(02):303-315. [27] TIAN Y,ZHENG X T,ZHANG X Y,et al. Efficient large-scale multiobjective optimization based on a competitive swarm optimizer[J]. IEEE Transactions on Cybernetics,2020,50(8):3696-3708. [28] 王丽萍,任宇,邱启仓,等.多目标进化算法性能评价指标研究综述[J].计算机学报,2021,44(8):1590-1619. WANG Liping,REN Yu,QIU Qicang,et al. Survey on performance indicators for multi-objective evolutionary algorithms[J]. Chinese Journal of Computers,2021,44(8):1590-1619. [29] ZHANG Q F,LI H. MOEA/D:A multiobjective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation,2007,11(6):712-731. [30] TIAN Y,CHENG R,ZHANG X Y,et al. An indicator based multi-objective evolutionary algorithm with reference point adaptation for better versatility[J]. IEEE Transactions on Evolutionary Computation,2018,22(4):609-622. [31] TIAN Y,ZHANG Y J,SU Y S,et al. Balancing objective optimization and constraint satisfaction in constrained evolutionary multi-objective optimization[J]. IEEE Transactions on Cybernetics,2021:1-14. [32] ASAFUDDOULA M,RAY T,SARKER R. A decomposition-based evolutionary algorithm for many objective optimization[J]. IEEE Transactions on Evolutionary Computation,2014,19(3):445-460. |